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WHEAT

Combining Field Surveys, Remote Sensing, and Regression Trees to Understand Yield
Variations in an Irrigated Wheat Landscape

David B. Lobell,* J. Ivan Ortiz-Monasterio, Gregory P. Asner, Rosamond L. Naylor, and Walter P. Falcon

ABSTRACT gap, its precise causes in many regions are not well
known, owing in part to a lack of data on spatial varia-Improved understanding of the factors that limit crop yields in
tions in crop yields and yield-controlling factors (Whitefarmers’ fields will play an important role in increasing regional food

production while minimizing environmental impacts. However, causes et al., 2002). Surveys of farmer practices, supplemented
of spatial variability in crop yields are poorly known in many regions by measurements of soil properties and crop perfor-
because of limited data availability and analysis methods. In this study, mance, have provided a valuable means of assessing yield
we assessed sources of between-field wheat (Triticum aestivum L.) constraints in farmers’ fields (e.g., Calvino and Sadras,
yield variability for two growing seasons in the Yaqui Valley, Mexico. 2002; Sadras et al., 2002). However, the time required
Field surveys conducted in 2001 and 2003 provided data on manage- to conduct a comprehensive survey, and in particular
ment practices for 68 and 80 wheat fields throughout the Valley,

to collect accurate soil and crop measurements, can limitrespectively, while yields on these fields were estimated using concur-
the number and extent of surveys. This is particularlyrent Landsat satellite imagery. Management–yield relationships were
true in regions with limited resources devoted to agricul-analyzed with t tests, linear regression, and regression trees, all of
tural research, such as throughout the developing world.which revealed significant but year-dependent impacts of management

on yields. In 2001, an unusually cool year that favored high yields, N In addition, surveys are often motivated by specific
fertilizer was the most important source of between-field variability. questions and, as a result, fail to measure the full suite
In 2003, a warmer year with reduced irrigation water allocations, the of variables needed to analyze yield variation (Wiese,
timing of the first postplanting irrigation was found to be the most 1982).
important control. Management explained at least 50% of spatial Recent developments in remote sensing have shown
yield variability in both years. Regression tree models, which were great promise for quantifying yield variations both
able to capture important nonlinearities and interactions, were more

within and between fields (Maas, 1988; Moulin et al.,appropriate for analyzing yield controls than traditional linear models.
1998; Shanahan et al., 2001; Baez-Gonzalez et al., 2002;The results of this study indicate that adjustments in management
Lobell et al., 2003). However, while many studies havecan significantly improve wheat production in the Yaqui Valley but
employed remote sensing in precision agriculture to an-that the relevant controls change from year to year.
alyze variations within individual fields (e.g., Wiegand
et al., 1994; Plant, 2001), few have addressed between-
field yield variations across the landscape. In the contextVariability in crop yields between fields is a ubiqui-
of crop surveys, yield remote sensing potentially pro-tous feature of agricultural landscapes and often
vides three unique advantages over ground-based ap-manifests itself in a significant gap between average
proaches. First, the ability to bypass field measurementsyields and those achieved on the highest-yielding lands.
of yield allows more time for other survey activities,Narrowing this yield gap will play a critical role in raising
which can result in increased sample sizes. Second, re-food production in step with continued growth in de-
mote sensing allows yield estimates at a range of spatialmand, especially as the genetic yield potential ceiling
scales, whereas field measurements are typically ob-for many major crops fails to increase at historical rates
tained from a limited number of small plots within fields(Cassman, 1999). Improved understanding of which fac-
and are therefore prone to sampling errors associatedtors most limit yields in farmers’ fields (and, as impor-
with within-field variability. Third, crop yields can betantly, those that do not) is also needed to reduce envi-
assessed for previous growing seasons using archivedronmental impacts of agriculture, such as those resulting
imagery, enabling analysis of past surveys that may notfrom overapplication of fertilizers, and to identify op-
have measured yield.portunities for improving farmer income.

Remote sensing thus offers a chance to increase theDespite the importance and prevalence of the yield
quantity and quality of survey data needed to identify
on-farm yield constraints. Another important factor forD.B. Lobell and G.P. Asner, Dep. of Global Ecol., Carnegie Inst. of

Washington, Stanford, CA 94305, and Dep. of Geol. and Environ. understanding yield constraints is the type of model used
Sci., Stanford Univ., Stanford, CA 94305; J. Ivan Ortiz-Monasterio, to analyze the data. Multiple linear regression modeling,
Int. Maize and Wheat Improvement Cent. (CIMMYT), Wheat Progr., for example, is a commonly used approach but can leadApdo. Postal 6-641, 06600 Mexico D.F., Mexico; and R.L. Naylor and

to inaccurate and unstable solutions when applied toW.P. Falcon, Cent. for Environ. Sci. and Policy, Inst. for Int. Studies,
Stanford Univ., Stanford, CA 94305. Received 4 Mar. 2004. *Corre- data sets with certain characteristics, such as a large
sponding author (dlobell@stanford.edu). number of insignificant predictor variables or the pres-
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Table 1. Remotely sensed estimates of wheat area and yield in the
Yaqui Valley for survey years compared with official statistics.

Estimated Official Estimated Official
Year area area Difference yield yield Difference

ha % t ha�1 %
2001 151 642 152 439 �0.5 6.08 5.98 1.7
2003 174 270 179 542 �2.9 4.92 5.00 �1.6

ence of strong interactions between variables (Hastie
et al., 2001). Yield survey data, which often exhibit both
of these characteristics, may therefore be poorly mod-
eled with linear regression. Various alternatives to linear
models have been developed in recent years that take
advantage of the greater computing power available
today. One such technique is regression tree modeling
(Breiman et al., 1984), which is a conceptually simple
yet powerful analysis tool that has been increasingly
applied in ecological and agricultural sciences (e.g., Plant Fig. 1. Comparison of yield estimates derived from Landsat with

farmer-reported values in 2001 and 2003. Regression statistics foret al., 1999; De’ath and Fabricius, 2000; Lapen et al.,
2001: n � 80, root mean square error (RMSE) � 0.37 t ha�1, and2001). Important features of regression trees related to
R2 � 0.78. For 2003: n � 47, RMSE � 0.64 t ha�1, and R2 � 0.60.survey data are (i) automated variable selection, (ii) a For all data: n � 127, RMSE � 0.49 t ha�1, and R2 � 0.76.

structure that highlights interactions between variables,
(iii) ease of interpretation, and (iv) an ability to handle peratures during the wheat growing season average 9.8 and
missing data (Hastie et al., 2001). 27.1�C for nighttime and daytime, respectively. Soils in this

This study investigates sources of between-field yield region are predominantly vertisols, with elevation varying very
gradually from 0 m on the western coast to a peak of 60 mvariability in the Yaqui Valley, an irrigated region com-
in the eastern edge of the district.prising 225 000 ha in Sonora, Mexico. Average yields

of wheat, the main crop in the Valley, increased from
Remotely Sensed Yield Estimatesroughly 2.0 t ha�1 in 1960 to 5.0 t ha�1 in 1980 and have

since remained near this level. Yet experimental trials Landsat ETM� images of the Yaqui Valley were acquired
and several farmers in the region regularly attain yields on 11 Jan. and 16 Mar. of 2001 and 1 Jan., 6 Mar., and 22
of 7.5 to 8 t ha�1, indicating a yield gap of roughly Mar. of 2003. These images were used to estimate wheat yields

following the approach described in detail by Lobell et al.2.5 t ha�1 that represents a significant opportunity for
(2003). Briefly, this approach uses instantaneous estimates ofincreasing regional production. Periodic surveys have
canopy light absorption from the satellite images to adjust abeen conducted in the Valley since 1981, revealing con-
locally calibrated model of wheat growth, which then providessiderable variability in farmer practices (Flores et al.,
an estimate of wheat yield for each pixel determined, based2001). However, only one survey directly measured crop
on a multitemporal classification, to contain wheat. The totalyields, and in this case, the factors underlying variability area and average yield estimates for the two growing seasons

were not clearly resolved, due in part to limited yield were within 3% of values reported for the agricultural district
variability among the 52 samples (Meisner et al., 1992). (Table 1). In addition, yields for individual fields provided by

Here we used Landsat Enhanced Thematic Mapper local farmers were compared with the average of remote-
Plus (ETM�) data, with 30-m spatial resolution, to esti- sensing estimates for pixels completely contained within their

fields. This field-level evaluation resulted in a close agreementmate wheat yields in the Yaqui Valley for the 2001
between ground and remote-sensing–based estimates (Fig. 1),and 2003 harvest seasons. These yield estimates were
demonstrating the ability of remote sensing to capture spatialcombined with data on management practices from co-
variability of yields across the landscape.incident field surveys to identify factors contributing to

yield variations in farmers’ fields. Both linear regression
Field Surveysand regression trees were used to analyze management–

yield relationships, providing a means to assess the rela- Field surveys were conducted from late February to late
March of each year to obtain information on managementtive performance of each technique in the context of
practices. The measured variables (a subset of which are de-explaining the yield gap.
fined in Table 2) included methods of soil preparation; choice
of wheat cultivar; date and method of planting; type, timing,

MATERIALS AND METHODS and amount of fertilizer applications; timing and number of
irrigations; type and amount of herbicide, fungicide, and insec-Site Description ticide applications; and residue management techniques. The
farmer estimated the date of final irrigation in most casesThe Yaqui Valley is an intensive agricultural region situated

along the Gulf of California coast, with agroclimatic conditions because the last irrigation typically occurs in late March, after
the surveys were completed. Importantly, we measured allsimilar to that of 40% of developing world wheat production

(Pingali and Rajaram, 1999). Fields in this region average management variables believed to have a potential impact on
yield, to avoid misinterpretation arising from the existence ofroughly 20 ha in size, with up to 85% of cultivated land planted

with wheat each winter season (November–April). Daily tem- important latent variables. Information on selected socioeco-
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Table 2. Statistical summary of selected management variables and yield estimates for survey fields.

2001 2003

Variable Description Mean SD† Median IQR‡ Mean SD Median IQR

DTPL planting date, d after 1 Nov. 41.8 11.0 43.0 16.0 34.1 13.0 35.5 21.3
QSEED seeding density, kg ha�1 146.3 27.3 150.0 40.5 146.6 23.5 150.0 31.0
BEDSP bed spacing, cm 79.3 5.4 80.0 0.0 79.1 10.2 80.0 0.0
ROWSP row spacing, cm 17.7 4.4 17.0 5.0 16.5 3.7 15.0 4.0
NOAP number of fertilizer applications 2.8 0.8 3.0 1.0 2.2 0.6 2.0 0.3
N total applied N, kg N ha�1 263.3 43.5 257.0 67.5 250.8 50.3 251.5 52.0
P total applied P, kg P ha�1 37.3 22.5 46.0 27.5 50.7 15.0 52.0 6.0
KGHAN1 N applied in first application, kg N ha�1 160.6 47.5 150.0 38.0 158.4 43.3 149.0 45.3
KGHAN2 N applied in second application, kg N ha�1 69.5 27.1 70.0 29.5 83.6 37.8 82.0 34.0
HERBICID herbicide applied (no � 0, yes � 1) 0.6 0.5 1.0 1.0 0.7 0.5 1.0 1.0
INSECT insecticide applied (no � 0, yes � 1) 0.7 0.4 1.0 1.0 1.0 0.2 1.0 0.0
FUNGICID fungicide applied (no � 0, yes � 1) 0.0 0.2 0.0 0.0 0.7 0.5 1.0 1.0
NOIRIG number of irrigations 4.1 0.2 4.0 0.0 3.7 0.5 4.0 1.0
IRR0 preplant irrigation, d before planting 18.1 6.2 17.0 6.0 20.8 9.1 20.5 10.0
IRR1 first auxiliary irrigation, d after planting 50.1 4.6 50.0 7.0 54.7 8.8 55.0 10.0
IRR2 second auxiliary irrigation, days after planting 79.4 6.0 80.0 8.5 85.4 9.4 85.0 10.5
IRR3 third auxiliary irrigation, d after planting 100.3 6.1 100.0 7.0 102.4 7.0 103.0 6.0
YIELD image yield estimate, t ha�1 6.4 0.6 6.4 0.8 5.2 0.8 5.3 1.2

† SD, standard deviation.
‡ IQR, interquartile range.

nomic factors, such as level of education, type of land tenure, al., 2002). Thus, the limited scope and resources of the surveys,
prior knowledge of general soil conditions, and indicationsand source of credit, were also collected.

In 2001, a total of 68 wheat fields (approximately 1% of that soil properties were not a major source of yield variability
resulted in the absence of detailed soil measurements. In addi-all wheat fields) were randomly selected throughout the Val-

ley. This survey was originally designed solely to update infor- tion, meteorological conditions were not measured on each
field but were assumed equal to conditions measured at themation on management practices within the Valley. The 2003

survey was specifically aimed at understanding yield varia- central meteorological station because of the close proximity
of the fields and the minimal change in elevation. The implica-tions. We therefore employed a stratified random sampling

design in 2003 as follows. The two early-season images (1 tions of the missing soil and weather information are dis-
cussed below.January and 6 March) were used at the beginning of the survey

period to generate an image of preliminary yield predictions.
[These yield predictions are distinguished from the final esti- Data Analysis
mates in two ways: They do not reflect changes in canopy

Three approaches were used to assess causes of yield varia-condition observed in the 22 March image, and they use ex-
tion. In the first analysis, the data were split into two subsets:pected weather for the remainder of the growing season
one containing fields with the highest 20 yields and the second(multiyear averages) rather than actual weather.] The yield
with the lowest 20 yields. A t test was then performed forimage was then combined with a GIS layer of the two main
each survey variable to test the hypothesis that its averagesoil types in the Valley, namely deep clay (DC) and compacted
value was the same for the lowest- and highest-yielding fieldsclay (CC), to identify four classes of fields:
(Meisner et al., 1992). The Mann–Whitney (or Wilcoxon) test,

1. Predicted yield � 5.5 t ha�1 on DC soils. which is the nonparametric equivalent to the t test, was also
2. Predicted yield � 5.5 t ha�1 on CC soils. used to ensure the results were not influenced by non-
3. Predicted yield � 5.0 t ha�1 on DC soils. Gaussian distributions in the management variables (Conover,
4. Predicted yield � 5.0 t ha�1 on CC soils. 1999). However, the results were very similar to the t test and

are therefore not presented.A random sample of 20 fields was selected from each of the
The second analysis employed multiple linear regression,four classes, resulting in a total of 80 fields. The main goal of

with forward stepwise variable selection used to identify thethis stratified design was to ensure sufficient contrast in yields
relevant predictor variables (Hastie et al., 2001). The Akaikebetween fields for the statistical analysis. A secondary goal
Information Criterion (AIC) was used to determine the stop-was to evaluate soil type–management interactions.
ping point (i.e., number of variables included):Soil properties were not directly measured in the surveys,

for several reasons. First, the 2001 survey was originally fo- AIC � n log(RSS/n) � 2p
cused on understanding farmer practices and not specifically
on sources of yield variability. Therefore, soil properties were where n is the number of observations, RSS is the model

residual sum of squares, and p is the number of parameters.not of direct interest in the original context of the 2001 survey.
Second, the required time and expense for soil collection and The minimum of the AIC is commonly used, as in this case,

to identify a parsimonious model that has both low error andanalysis made soil testing for each field within the survey
unfeasible. Third, an existing map of soil types within the few parameters.

Finally, the survey and yield data sets were analyzed withValley obtained from the National Institute of Forestry, Ag-
ricultural and Animal Research (INIFAP) enabled at least a regression trees (Breiman et al., 1984). In this method, the

response variable (i.e., yield) is modeled as a piece-wise con-general description of soils on each field. Fourth, and most
importantly, a previous study of spatial patterns in remotely stant function. The data are first split into two subsets based

on the predictor variable and value of that variable that resultssensed yields indicated that the majority of yield variability
occurred over short distances, suggesting that between-field in the greatest increase in explained variance of the response

variable. Each subset, or daughter node, is then analyzed inde-variations in management practices were a more important
contributor than soil properties to yield variability (Lobell et pendently using the same binary partitioning procedure, with
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Table 3. Comparison of yields and selected management variables for 20 lowest- and 20 highest-yielding fields in two survey years.
Variable definitions and units are given in Table 2.

20 lowest-yielding fields 20 highest-yielding fields
p value of

Year Variable Mean SD† Median IQR‡ Mean SD Median IQR t test

2001 YIELD 5.7 0.3 5.7 0.5 7.3 0.3 7.2 0.3 0.00
DTPL 37.7 9.3 37.5 8.8 45.2 11.7 45.0 15.3 0.03
N 240.8 55.6 234.5 60.5 269.0 32.3 257.0 48.8 0.06
P 33.7 24.9 38.0 34.8 40.1 22.4 49.0 25.3 0.40
NOIRIG 4.2 0.4 4.0 0.0 4.0 0.0 4.0 0.0 0.08
IRR0 18.5 5.9 17.0 5.0 17.3 5.7 15.5 7.5 0.52
IRR1 50.0 4.5 50.0 4.8 50.2 4.3 50.0 5.3 0.91
IRR2 78.4 6.2 79.5 8.0 79.2 5.2 80.0 8.5 0.66
INSECT 0.7 0.5 1.0 1.0 0.8 0.4 1.0 0.0 0.48
HERBICID 0.6 0.5 1.0 1.0 0.4 0.5 0.0 1.0 0.22
FUNGICID 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.16

2003 YIELD 4.1 0.3 4.1 0.4 6.1 0.2 6.0 0.3 0.00
DTPL 34.8 13.1 31.0 19.0 38.0 9.4 42.0 10.3 0.38
N 256.9 45.6 265.0 51.5 259.0 41.4 260.0 51.8 0.88
P 49.6 14.5 52.0 6.0 52.9 15.2 52.0 3.0 0.53
NOIRIG 3.5 0.5 3.5 1.0 3.8 0.5 4.0 0.3 0.07
IRR0 20.1 5.2 21.0 2.8 25.4 9.0 25.5 12.0 0.03
IRR1 60.4 6.7 60.0 6.8 51.0 9.0 51.0 8.8 0.00
IRR2 91.4 8.6 90.0 9.0 82.7 9.6 83.0 10.3 0.00
INSECT 1.0 0.2 1.0 0.0 1.0 0.2 1.0 0.0 1.00
HERBICID 0.6 0.5 1.0 1.0 0.8 0.4 1.0 0.0 0.18
FUNGICID 0.7 0.5 1.0 1.0 0.8 0.4 1.0 0.3 0.50

† SD, standard deviation.
‡ IQR, interquartile range.

a split performed only if the resulting model exceeds a prede- tions, which averaged 5 d later in 2003 than 2001; and the
fined threshold of improvement. The result of this recursive increased prevalence of fungicide application in 2003,
binary partitioning is a model whose structure can be displayed resulting from more widespread infestation of leaf rust.
as a tree-like graph, with each split in the tree labeled ac- A comparison of the highest- and lowest-yielding fields
cording the threshold used to define the split. All analyses (Table 3) revealed that no management variable wasdescribed above were implemented in the software package

significantly different (i.e., p � 0.05) between the twoR (Ihaka and Gentleman, 1996).
yield classes in both years. For example, planting dateA potential problem when applying ordinary least-squares
(DTPL) and N rate (N) appeared as important factors(OLS) regression models to spatial data is that errors may be
in 2001 but not 2003, whereas irrigation timing appearedspatially correlated (i.e., not independent), which violates a

basic assumption of OLS methods and may introduce bias important in 2003 but not 2001.
into model interpretation (Long, 1998; Haining, 2003). In par- These differences can be understood in the context
ticular, one is prone to underestimate the uncertainties associ- of the different climatic conditions for the two years, as
ated with model parameters and, thus, the corresponding p well as the different management regimes. Figure 2 shows
values. To assess the influence of spatially correlated errors, the cumulative average daily temperature for the two
model residuals were tested for spatial correlation using the growing seasons, along with the 20-yr average. WhileMoran I and Geary c tests. Both tests indicated a significant

2003 was representative of average temperatures in thelevel of spatial correlation in model errors for both the linear
past two decades, 2001 was an unusually cool year. Inregression and regression tree models (p � 0.05). We therefore
this region, cooler temperatures favor enhanced wheatrepeated the linear regression analysis using a maximum likeli-

hood approach to simultaneously solve for model parameters
and spatial error correlation, as implemented by the package
“spdep” in R. The coefficients of each model variable were
within 6% of the original estimates, indicating that explicit
consideration of spatial correlation of errors did not substan-
tially change model estimates. We therefore present only the
OLS estimates while acknowledging that spatial autocorrela-
tion may contribute to underestimation of parameter uncer-
tainties.

RESULTS AND DISCUSSION
The survey answers for selected management vari-

ables are summarized in Table 2. While a detailed analy-
sis of management variability, in itself, is beyond the
scope of this paper, we note that the distributions of
management practices were generally similar between
the two years. Exceptions to this are seen in the planting Fig. 2. Cumulative average daily temperature for 2001 and 2003 dur-
date, which averaged a week later in 2001 than 2003; ing the wheat growing season in the Yaqui Valley. Also shown is

the average for 1984–2003.timing of first and second auxiliary (postplanting) irriga-
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yield potential (Fischer, 1985), as reflected in the higher lute magnitude greater than 0.35 (not shown). Nonethe-
yields achieved in 2001 (Table 1). Higher yield potential, less, of interest here is the explanatory power of the
in turn, increases demand for fertilizer N because the model, which equaled 51% with nine variables.
N requirement of wheat increases nonlinearly with grain In 2003, only three variables were selected for the
yield (Ortiz-Monasterio, 2002). regression model (Table 5), with days between planting

In 2003, on the other hand, temperatures were less and first irrigation alone explaining 18% of yield vari-
favorable to wheat growth. In addition, farmers were ability. The two land-leveling operations LPLANE and
allocated an average of only 43 cm of irrigation water LEVEL exhibited similar effects on yield but in opposite
in 2003 compared with 53 cm in 2001, resulting in lower directions. LPLANE is done with a land plane, which
total irrigations and delayed application of the first irri- is a large piece of equipment that does a much better
gation by an average of 5 d (Table 2). The combination job of leveling the land than LEVEL, which is the use of
of reduced irrigation and warmer temperatures, which a plank to correct minor leveling problems. The primary
increase water demand, help to explain the increased objective of LEVEL is often solely to create a flat sur-
importance of water in 2003. face for machinery to drive on the field (e.g., for fertilizer

The fact that sources of spatial yield variability application) and can only correct minor leveling prob-
changed significantly between years reflects the impor- lems. Because most farmers perform only one of the two
tance of climate–management interactions at the re- operations, the two variables are negatively correlated.
gional scale. As this study spanned only 2 yr, it is difficult This may explain the apparent negative impact of
to say whether most years in the Valley are similar to LEVEL, which is simply a reflection of anticorrelation
one of these years or whether each year presents a with effective land leveling (LPLANE).
unique set of factors that dominate spatial yield variabil-
ity. In either case, it is clear that management recom-

Regression Treesmendations should account for climatic conditions when
possible and that surveys conducted in individual years The regression tree models for 2001 and 2003 are
must be interpreted with caution when applied to new shown in Fig. 3 and 4, respectively. In these figures, all
situations. observations that satisfy the criterion at a given split

fall to the left-hand daughter node while those not meet-
Stepwise Linear Regression ing the criterion continue to the right. The number of

fields and their average yield, which is equal to theThe t tests presented above provide useful compari-
model estimate, is shown for each terminal node. Insons of the relationship between individual factors and
2001 for example, there were 16 fields that receivedcrop yields, but multivariate models are needed to assess
greater than 240.5 kg N ha�1, were planted before 13the combined impact of different variables taking into
December, and received their third irrigation less thanaccount their covariations. For 2001, stepwise linear re-
98.5 d after planting, with an average yield of 6.59 tgression selected a model with nine variables (Table 4).
ha�1. Also shown (Fig. 3b) is a plot of observed vs.In this model, insecticide application, N rates, planting
modeled yield, which indicates the spread associateddate, P rates, and field ploughing were deemed posi-
with each terminal node.tively related to yield, whereas negative relationships

Results of the regression tree model indicated that Nwere inferred for bed reformation, number of irriga-
rate was the most important variable determining yieldtions, days between preplant irrigation and planting,
in 2001, with fields that received more than 240.5 kg Nand leveling of canals. The magnitude and sign of the
ha�1 achieving higher yields than those that did notregression coefficients should be interpreted with care,
(Fig. 3). Planting date was of secondary importance andparticularly for those variables with high standard errors
impacted only those fields with high N. The fact thatsince correlation between predictor variables can impact
no additional splits were performed on fields with lowthe regression estimates. In this case, predictor variables
N rates indicates that N was the main constraint to yieldwere not highly correlated, with only bed reformation

and leveling of canals exhibiting a correlation with abso- for these fields. The overall model explained roughly

Table 4. Regression statistics for 2001 survey, with variables listed in order of selection by stepwise forward procedure.

Significant
variables Description Estimate SE† t value P � |t | Cumulative R2 AIC‡

Constant model intercept 7.21 1.07 6.76 0.00 – �61.67
INSECT insecticide applied (no � 0, yes � 1) 0.58 0.15 3.79 0.00 0.09 �66.11
N total applied N (kg N ha�1) 0.005 0.001 3.47 0.00 0.17 �70.02
REFORM bed destruction and reformation, used for �0.39 0.13 �2.96 0.00 0.25 �75.19

weed control (no. times)
DTPL planting date (days after 1 Nov.) 0.02 0.01 3.18 0.00 0.31 �78.84
NOIRIG number of irrigations �0.71 0.26 �2.70 0.01 0.37 �82.86
IRR0 preplant irrigation (days before planting) �0.02 0.01 �2.21 0.03 0.41 �85.72
BORRADO leveling of canals for machine access �0.45 0.26 �1.71 0.09 0.46 �89.19
P total applied P (kg P ha�1) 0.01 0.003 2.09 0.04 0.48 �90.59
PLOUGH disk plowing to a depth of 22 to 28 cm 0.23 0.13 1.82 0.07 0.51 �92.37

† SE, standard error.
‡ AIC, Akaike Information Criterion.
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Table 5. Regression statistics for 2003 survey, with variables listed in order of selection by stepwise forward procedure.

Significant
variables Description Estimate SE† t value P � |t | Cumulative R2 AIC‡

Constant model intercept 7.47 0.51 14.59 0.00 – �43.77
IRR1 first irrigation (days after planting) �0.04 0.01 �4.43 0.00 0.18 �55.92
LEVEL minor land-leveling operation using plank (no. times) �0.29 0.14 �2.07 0.04 0.26 �60.85
LPLANE major land-leveling operation using land plane (no. times) 0.25 0.14 1.84 0.07 0.29 �62.35

† SE, standard error.
‡ AIC, Akaike Information Criterion.

44% of yield variability using three variables, whereas on the CC while N rates were selected on the DC. These
the linear model used nine variables to explain 51%. results are consistent with the fact that CC soils hold

In 2003, time between planting and first irrigation less water, and thus yields are more sensitive to water
was the most important variable, with fields irrigated management.
more than 56 d after planting experiencing yield reduc- A comparison of the linear regression and regression
tions (Fig. 4). In those fields that were irrigated in time, tree results reveals that the two models identified the
the amount of N received at first application was an same major management variable for each year: N in
important determinant of yield. In contrast, the most 2001 and days to first irrigation in 2003. However, re-
important variable for fields that were not irrigated in gression trees were able to capture important nonlinear
time was land leveling. These differences reflect the effects as well as interactions between management vari-
interaction between management factors; i.e., N levels ables. In the context of identifying causes of the yield
were only important if the plant had sufficient water to gap and potential management approaches, models that
make use of the N. Interestingly, not one of the 13 fields provide both a simple and accurate (i.e., parsimonious)
that received sufficient water and fertilizer fell below representation of yield controls are desired (Lark, 2001).
5.5 t ha�1 while fields that were irrigated more than 56 d The regression tree models were therefore deemed more
after planting and experienced one or more leveling appropriate than the linear models for both survey
were all below this level. The overall model explained years. In 2001, the regression tree model explained a
roughly 52% of yield variability using three variables, similar amount of yield variability but with far fewer
which is a substantial improvement over the linear variables. In 2003, the regression tree explained a much
model (29% with three variables). greater amount of variability with the same number

To evaluate the interaction between management and of variables. In both years, the regression tree models
soil type, the regression tree model was applied sepa- explained roughly half of yield variability using only
rately to the fields on each soil type. The results indi- three management factors.
cated that timing of irrigation was the most important
variable on both soils but that the critical threshold was Unmeasured Sources of Variability3.5 d earlier on the CC soil, which has lower water-

The fraction of yield variability not explained by theholding capacity (Fig. 5). In addition, days between pre-
plant irrigation and planting were deemed important statistical models above (roughly 50% in both years)

Fig. 3. (A) Regression tree model for 2001 survey. (B) Comparison of yield estimates with regression tree model predictions (R2 � 0.44).
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Fig. 4. (A) Regression tree model for 2003 survey. (B) Comparison of yield estimates with regression tree model predictions (R2 � 0.52).

can generally be attributed to three factors. First is the of practices for a specific land parcel. These errors were
not quantified in this study, as doing so would requirepresence of measurement error, both for management

variables and yield estimates. While farmers’ answers independent sources of management information. Er-
rors in the Landsat yield estimates may also contributeto survey questions represent the best available informa-

tion, errors may result from imperfect farmer memory to model error. Based on the observed correlation be-

Fig. 5. Regression tree model for 2003 survey for fields in (A) deep clay (DC) and (B) compacted clay (CC) soils. R2 � 0.40 on DC and 0.45
on CC.
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tween actual and estimated yields (Fig. 1), yield errors CONCLUSIONS
can explain a maximum of roughly 25% of model error. We used remote sensing to generate spatially exten-

A second potential source of unexplained yield vari- sive estimates of wheat yield at 30-m resolution, which
ance is an inability of the statistical models to capture were then combined with 2 yr of survey data to assess
the true relationship between management and yield. important sources of spatial variability in yields. The
The improvement of decision trees over linear models, results indicate that, for the Yaqui Valley, causes of
for instance, reflects the increase in explanatory power yield variability differ considerably between years. In
possible with more appropriate models. It is possible 2001, which was an unusually cool year, N fertilizer was

the most important yield determinant despite very highthat the use of process-based crop models would im-
average rates of N application (�260 kg N ha�1). Inprove the agreement between modeled and measured
2003, a more typical year climatically, the timing of wateryields.
application represented the most important source ofFinally, model error may reflect the absence of impor-
yield variability.tant explanatory variables, such as management vari-

Overall, it appears that management variations, asables that were not measured in the survey (e.g., planting
opposed to soil or climatic constraints, drive the major-depth), differences in pest populations, soil properties,
ity of yield variability in the Yaqui Valley. This conclu-or spatial variations in weather. The existence of spatial sion is consistent with previous interpretations basedcorrelation in model errors suggests that at least part on analysis of spatial yield patterns (Lobell et al., 2002)

of the unexplained variance in yields was attributable and has the important implication that the yield gap can
to factors that exhibit spatial autocorrelation across the be significantly reduced through management changes.
landscape. The management variables that were recorded For example, the average yield in the highest manage-
in this study did not generally exhibit spatial autocorre- ment class was 0.84 t ha�1 higher than the Valley average
lation (Moran’s I test, p � 0.1); therefore, one would in 2001 and 0.98 t ha�1 higher in 2003.
expect nonmanagement variables to explain part of the However, these results also indicate that strategies to
model residuals. Moreover, the spatial patterns of these improve yields through management must consider the

role of climate variability. For example, N availabilityresiduals did not correspond to existing maps of soil
may constrain yields in one year, but increasing applica-type (not shown). Therefore, we suspect that at least
tion rates may not make sense in the context of interan-part of the model error is due to factors such as soil
nual climate variability (Lobell et al., 2004). Conversely,characteristics other than type, weather conditions, and
the climatic dependence of management impacts impliesspatially dependent biological processes such as weed
that seasonal weather forecasts would be useful for acompetition or rust infestation. Future work is needed
wide range of management decisions, including thoseto explore these factors in more detail. However, our
related to fertilizer, irrigation, planting date, soil prepa-results suggest that such processes are likely to explain
ration, and pest control.a small fraction of yield variability relative to the major The results presented here imply that improved fertil-

management factors. izer and water use are the most pressing management
As with all empirical models, the interpretation of needs for increasing yields. It is interesting to note that

the results above must be qualified with two caveats. timing of irrigation was more important than number
First, it is always possible that an unmeasured, latent of irrigations, suggesting that the efficient use of water
variable has introduced bias into model results, even is more important than total amount of water applied
though we were careful to measure all factors that we for yields in this region. Similarly, previous studies in this
considered potential explanatory variables. Second, one region have documented the improved N use efficiency
must recognize the possibility that the inferred impor- attainable through better timing of N application (Mat-

son et al., 1998). For both water and N, it thereforetance of a measured variable is not due solely to a direct
appears that efficiency of resource use plays as impor-effect of that variable on the response but in part to the
tant a role, if not more, than total input amounts. Con-effect of another variable that covaries with the first.
sideration of the economic and environmental costs as-For these reasons, it is often suggested that empirical
sociated with increased inputs places an even greatermodels should be used only for prediction of unobserved
emphasis on the need for more efficient resource usequantities and not for modeling response of systems
(Matson et al., 1998; Cassman, 1999).to change (i.e., extrapolation). However, in situations

In general, an understanding of biophysical con-where direct experimental manipulation is impractical,
straints to yield is only a first step toward improvedempirical models play an important if not complete role
management because food production is only one objec-in uncovering cause–effect relationships. In particular, tive of agricultural activity. Farmers, for example, are

empirical models of spatial crop yield variability can most concerned with profit, and yield gains from higher
provide valuable information on the relative importance fertilizer rates may not justify the associated increase
(or unimportance) of known mechanisms at the field or in costs. An eventual goal of this research is thus to
regional scale (Landau et al., 2000; Corwin et al., 2003). quantify all of the agronomic, economic, and environ-
In these cases, an important distinction should be made mental trade-offs associated with management changes.
between correlation and causation, and model interpre- A quantitative understanding of yield controls is a criti-
tation should be guided by whether model variables and cal step in this direction.
their coefficients are physically reasonable, as they were Beyond the Yaqui Valley, the results presented here

have important implications for the design and interpre-in this study.
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