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[1] We develop optimal conjunctive use water management strategies that balance two
potentially conflicting objectives: sustaining irrigated agriculture during droughts and
minimizing unnecessary spills and resulting water losses from the reservoir during wet
periods. Conjunctive use is specified by a linear operating rule, which determines the
maximum surface water release as a function of initial reservoir storage. Optimal strategies
are identified using multiobjective interannual optimization for sustainability and spill
control, combined with gradient-based annual profit maximization. Application to
historical conditions in the irrigated system of the Yaqui Valley, Mexico, yields a Pareto
curve of solutions illustrating the trade-off between sustaining agriculture and minimizing
spills and water losses. Minimal water losses are obtained by maximizing surface
water use and limiting groundwater pumping, such that reservoir levels are kept
sufficiently low. Maximum agricultural sustainability, on the other hand, results from
increased groundwater use and keeping surface water reservoir levels high during wet
periods. Selected optimal operating rules from the multiobjective optimization are tested
over a large number of equally probable streamflow time series, generated with a
stochastic time series model. In this manner, statistical properties, such as the mean
sustainability and sustainability percentiles, are determined for each optimal rule. These
statistical properties can be used to select rules for water management that are reliable over
a wide range of streamflow conditions.
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1. Introduction

[2] Conjunctive use of surface water and groundwater
resources for irrigated agriculture is beneficial because it
can buffer the natural variability of supplies obtained from
surface water by relying to a greater extent on groundwater,
which is typically more expensive. In many arid and
semiarid regions, surface water reservoirs have been built
to protect against the natural variability of runoff. However,
reservoirs constructed for drought mitigation usually per-
form multiple tasks that conflict with water supply for
irrigation, such as flood protection [Yeh, 1985; Labadie,
2004]. Groundwater provides additional insurance against
reductions in agricultural production during droughts
[Bredehoeft and Young, 1983; Tsur, 1990]. A drawback
is that increased groundwater pumping during extended
droughts may lead to severe aquifer head drawdowns,
resulting in high pumping costs and seawater intrusion in
coastal aquifers [Willis and Finney, 1988; Reichard and
Johnson, 2005; Schoups et al., 2006]. When developing
conjunctive water management strategies, all these issues

should be taken into account. In addition, given the large
uncertainty in surface water supply, the proposed strategies
should be reliable over a wide range of streamflow
scenarios. Therefore a two-pronged approach is needed.
First, a tool is needed to quantify streamflow uncertainty,
which is commonly achieved by means of a stochastic
streamflow model. Second, optimal water management
decisions need to be identified that account for streamflow
uncertainty, which results in a stochastic optimization
problem.
[3] The literature on stochastic time series analysis ap-

plied to streamflow modeling is vast and many methods
have been developed for a wide range of problems [Salas,
1993]. In this paper, we are concerned with the concurrent
generation of monthly streamflow at multiple reservoirs
such that observed autocorrelations and cross correlations
are preserved at both monthly and multiannual timescales.
Particularly, in terms of sustainable water management it is
essential that the observed drought characteristics are pre-
served in the generated time series [Loaiciga, 2005]. Either
parametric or nonparametric methods may be used for this
type of problem. Parametric models make assumptions
about the form of the distributions (e.g., Gaussian) and
typically require a large number of parameters to be
estimated when both short-term and long-term correlations
need to be preserved [Rasmussen et al., 1996]. Parametric
disaggregation methods [Koutsoyiannis, 2001] are available
to deal with this problem by e.g., first generating annual
streamflows, followed by disaggregation to monthly flows.
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Alternatively, nonparametric models such as bootstrapping
methods [Vogel and Shallcross, 1996] and kernel-based
methods [Tarboton et al., 1998] have been developed that
do not make any prior assumptions about the shapes of the
distributions. More recently, hybrid methods have been
introduced that combine the strength of both parametric and
nonparametric approaches [Srinivas and Srinivasan, 2005].
[4] The next step is to solve the problem of optimal water

management under uncertain water supply. Two main
approaches can be distinguished, namely implicit and
explicit stochastic optimization [Labadie, 2004]. Implicit
stochastic optimization (ISO) relies on deterministic opti-
mization methods to find management strategies that are
optimal over a long historical record [Lund and Ferreira,
1996] or over a large number of shorter synthetic streamflow
realizations [Young, 1967; Bhaskar and Whitlatch, 1980].
Postoptimization regression analysis [Hiew et al., 1989]
or neural network analysis [Raman and Chandramouli,
1996] of the optimization results then yields general operat-
ing rules that, for example, specify reservoir releases as a
function of current storage. Explicit stochastic optimization
(ESO) on the other hand works directly with streamflow
probabilities, which can either be included in the objective
function, as in stochastic linear programming [Jacobs et al.,
1995; Seifi and Hipel, 2001] and stochastic dynamic
programming [Loaiciga and Marino, 1986; Tejada-Guibert
et al., 1995; Faber and Stedinger, 2001], or in the constraints
through chance-constrained programming [e.g., Loucks and
Dorfman, 1975], or in both the objective function and the
constraints [Reichard, 1995]. The ESO approach explicitly
accounts for the lack of perfect knowledge of future events,
but it can lead to computationally intractable optimization
problems of multireservoir systems.
[5] The current paper focuses on conjunctive use in one

of the most important agricultural regions in Mexico, the
6800 km2 Yaqui Valley near the Sea of Cortez in the state of
Sonora. The objective here is to derive conjunctive surface
water and groundwater operating rules for a wide range of
streamflow scenarios. In particular, the goal is to find a
balance between unnecessary reservoir spills during wet
periods and sustained irrigated agriculture during drought
conditions, while avoiding excessive aquifer head draw-
downs and seawater intrusion.
[6] We build on a deterministic spatially distributed

numerical simulation-optimization model for the Yaqui
Valley developed by Schoups et al. [2006], and present
here for the first time an approach that involves a combi-
nation of methods enabling us to consider a more complex,
multiannual, regional water management problem under
uncertainty. Methodologically, Schoups et al. [2006] studied
elements of water management with a deterministic model
of the hydrologic systems (surface water reservoirs and
alluvial coastal aquifer), and a model that simulates crop
production. Using these model components, a series of an-
nual profit maximization problems were solved with large-
scale constrained gradient-based optimization. Unlike that
prior work, here we consider a substantially different prob-
lem. We study multiobjective trade-offs in surface water
reservoir operation that arise from uncertainty in stream-
flow. In addition, our water management model is multi-
annual and integrates a variety of modern methodological
advances.

[7] There are three primary contributions of the current
work. First, water management operating rules are identified
in a hierarchical framework by means of interannual opti-
mization of agricultural sustainability and spill minimiza-
tion using a multiobjective global optimization algorithm
[Vrugt et al., 2003], with a nested series of annual profit-
maximizing models solved with nonlinear gradient-based
optimization [Gill et al., 2002]. As a starting point, our
hierarchical optimization framework was based on the
approach of Cai et al. [2001], who used a genetic algorithm
for multiannual optimization and linear programming for
annual optimization. Ours is a nonlinear optimization
problem and therefore the approach is a generalization of
the one presented by Cai et al. However, more importantly,
our problem is a multiobjective one. Cai et al. considered
only one objective, namely agricultural sustainability. Our
approach on the other hand, explicitly quantifies trade-offs
between two objectives: sustaining irrigated agriculture
during droughts and minimizing unnecessary reservoir losses
during wet periods. Our study also builds upon the valuable
approach of Lund and Ferreira [1996]. As in their work, we
assume perfect knowledge of a long historical record of
monthly streamflows. However, our approach differs from
that study in that optimal management is parameterized by a
linear operating rule. Our method is similar to the piecewise
linear operating rules of Oliveira and Loucks [1997]. The
slope and intercept of the linear rule are used as decision
variables in the multiannual optimization. A second contri-
bution of this paper that was not within the scope of Schoups
et al. [2006] is that uncertainty in surface water supply is
quantitatively addressed. To accomplish this, we use a large
number of equally probable streamflow realizations gener-
ated by the stochastic streamflow generation method of
Srinivas and Srinivasan [2005]. Our third contribution
involves performance evaluation. Optimal operating rules
are evaluated by means of a postoptimization Monte Carlo
analysis using a large set of generated streamflow records.
In that sense, our approach is related to the implicit
stochastic optimization (ISO) method discussed earlier.
[8] The paper is organized as follows. First, we give some

background on the Yaqui Valley study area. This is followed
by an outline of the hierarchical optimization approach, and
a brief discussion of the stochastic streamflow model.
Results are then presented for each part of the analysis
and finally our findings are summarized in the conclusions.

2. Yaqui Valley Study Area

[9] The Yaqui Valley is located in the southern part of the
state of Sonora, Mexico. It consists of a coastal alluvial
plain bordered by the Sea of Cortez and the Sierra Madre
Mountains. The climate is semiarid with annual potential
evapotranspiration (2000 mm) much larger than annual
precipitation (300 mm). Farmers in the Yaqui Valley are
organized into an irrigation district, which we will refer to
as ‘‘the district’’. Wheat is the dominant crop and is grown
from November to April. Irrigation mainly depends on
surface water from the Yaqui River, which is stored in three
sequential reservoirs with a total capacity of 6713 � 106 m3.
Surface water is distributed to farms in the district by means
of a network of irrigation canals, most of which are unlined.
Although available water storage in the alluvial aquifer
underlying the district (estimated at 100,000 � 106 m3) is
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much larger than surface water storage, historically, ground-
water pumping has been limited to approximately 400 �
106 m3 per year, as supplied by almost 350 wells. Surface
drainage ditches discharge excess irrigation water and fer-
tilizer to the ocean, leading to temporary algal blooms in
the Sea of Cortez [Beman et al., 2005]. For further back-
ground on the hydrology of the Yaqui Valley, we refer to
Addams [2004] and Schoups et al. [2005].

3. Multiscale Hierarchical Optimization
Framework

[10] The optimization model operates on two timescales
(Figure 1): a long-term or interannual timescale and a short-
term or annual timescale. In the following sections we
discuss methods, decision variables, and objectives for these
two timescales.

3.1. Interannual Optimization Model

[11] The purpose of the interannual optimization model is
to identify an optimal conjunctive use plan that maximizes
performance indices that quantify agricultural sustainability
and reservoir spills, to be defined in the next paragraph.
Conjunctive use for irrigation is quantified by a linear
operating or release rule of the form,

RAy ¼ a� ASy þ b ð1Þ

where RAy is annual water allocation from the downstream
reservoir (Oviachic) to the district and ASy is available
storage at the end of September in year y, both in units of
106 m3. Available storage is calculated as the total storage in
the three reservoirs minus 1650 � 106 m3, which accounts
for dead storage (950 � 106 m3), diversions to other users

such as urban water supply, mining operations, and water
obligated to prior appropriators (400 � 106 m3), and
evaporation (300 � 106 m3). Coefficients a and b are slope
and intercept, respectively, of the linear operating rule.
When a is zero, b represents an upper limit on annual
release for irrigation from the downstream reservoir. When
b is zero on the other hand, a represents the fraction of
available storage that is allocated to irrigation. Note that the
operating rule in (1) is a general release rule, defining the
release for a target demand, irrigation in this case, as a
function of the total available storage [Oliveira and Loucks,
1997]. The rule is implemented as a constraint in the annual
optimization model, together with constraints on storage in
each of the three reservoirs (see next section and Table 1).
The combination of these various constraints results in an
actual piecewise-linear operating rule, as illustrated in
Figure 2: the actual release or allocation is either
constrained by the linear release rule defined by (1) or by
the amount of water available in the reservoirs.
[12] By means of these two decision variables, a and b,

different conjunctive use strategies are obtained. For exam-
ple, historical reservoir releases may be approximated by
taking a = 0.47 and b = 990 (Figure 3). Schoups et al.
[2006] found that by changing this historical rule to a = 0
and b = 1450, reductions in agricultural production during
the recent drought could have been prevented by pumping
more in wet years and storing extra reservoir water for irri-
gation during droughts.
[13] Two different objectives are considered in the long-

term planning model. The first objective measures sustain-
ability of irrigated agriculture and the second one measures
the water losses spilled from the reservoirs to the ocean.
Sustainability of alternative management strategies is eval-
uated in terms of the following three indices modified from
Cai et al. [2002],

REL ¼ 1

n

X
y

IrrFracy ð2aÞ

RES ¼ 1� nfail

n
ð2bÞ

IVUL ¼ Min
y

IrrFracy
� �

ð2cÞ

where REL is crop production reliability, RES is resiliency,
and IVUL is invulnerability or the opposite of vulnerability.
IrrFracy is the fraction of total irrigable land irrigated in
year y, n is the total number of years considered, and nfail
was chosen as the number of consecutive years in the time
series that irrigated acreage is smaller than 85% of total
irrigable land. The value of 85% was selected as an
appropriate cutoff value to distinguish between various
operating rules. Sensitivity of the results to this value will be
discussed later. Values for the sustainability indices vary
between 0 and 1 with higher values indicating greater
sustainability. They are combined into an overall weighted
sustainability index [Loucks, 2000],

SUS ¼ w1RELþ w2RES þ w3IVUL ð3Þ

Figure 1. Schematic of the hierarchical optimization
strategy: optimization occurs at the annual timescale using
a nonlinear gradient-based algorithm (SNOPT), and at the
interannual timescale using a global Monte Carlo–based
multiobjective algorithm (MOSCEM-UA).
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with values between 0 and 1, and the three weights w
summing to 1. These weights reflect the decision maker’s
preference to each index. In the absence of any clear
preferences, the weights were given equal values of 1/3, as
in the work by Cai et al. [2002]. It is reasonable to assume
that decision makers are equally concerned with all three
aspects of the system’s sustainability. Effects of the
predefined weight values on the results are assessed after
the optimization results are presented. Large values for SUS
result from a policy that sustains agricultural production
through extended droughts. Note that sustainability in terms
of the risk of salinization of soil and groundwater resources
is not included in (3). Instead, we assess salinization risk in
a postoptimization phase, based on water table depths and
aquifer head gradients near the coast, calculated by a
regional groundwater model for the study area [Schoups et
al., 2005]. It is possible to explicitly incorporate environ-

mental objectives into the optimization, as done by Cai et
al. [2002] and McPhee and Yeh [2005].
[14] The second objective measures the water losses from

the reservoirs to the ocean by minimizing total spills from
the system using the following index,

SC ¼ 1�
X
y

Spilly

�X
y

RAy ð4Þ

where Spilly and RAy are total annual spill and water
allocation to irrigated agriculture respectively from the
downstream reservoir. In other words, the spill control
index SC measures total spills over a time horizon of
n years expressed as a fraction of total reservoir releases to
the district over the time horizon. Its value varies between

Table 1. Objective Function and Constraints of the Annual Simulation-Optimization Model for Year ya

Constraint Formulation
Simulation Models Used

in Computation

Objective function
Max

X
m

X
cr

CropAcy;m;cr CPy;crYy;m;cr þ CSy;cr � CCy;cr

� �
�
X
m

DCy;m � a
X
t

X
k

Spilly;t;k

( )
crop production model,
groundwater model

Irrigable acreage 0 �
X
m

X
cr

CropAcy;m;cr � CropAcTot

Pumping rate 0 � Pumpy,t,w � PumpCapw

Reservoir storage Smin,k � Sy,t�1,k + ROy,t,k + (Py,t,k � Ey,t,k) Ay,t,k + fcQy,t,k�1 � Qy,t,k � Spilly,t,k � Qy,t,k
fix � Smax,k reservoir model

Monthly release from
downstream reservoir

Qmin �
X
m

CWy;t;m þ
X
r

Qleak;y;t;r � Qmax canal model

Annual release from
downstream reservoir

QAmin �
X
y

X
m

CWy;t;m þ
X
r

Qleak;y;t;r

 !
� QAmax canal model

Field-scale leaching
fraction

0 � (1 � IrrigEffcr) +
DPy;m;cr

AWy;m;cr
� LCHmax crop production model

aIndices are as follows: y is year, t is month, w is well, k is reservoir, m is module, cr is crop. A module is a water management unit in the district. There
are 333 wells and 42 modules.

Figure 3. Time series of historical (‘‘actual’’) and
empirically derived reservoir releases, using the linear
release rule in (1) with slope a = 0.47 and intercept b =
990 � 106 m3. Reservoir releases are annual water
allocations to the district from the downstream reservoir,
excluding urban water use (100 � 106 m3). MCM = 106 m3.

Figure 2. Piecewise linear operating rule consisting of
(1) the linear release rule defined in equation (1) with slope a
and intercept b and (2) storage constraint, limiting reservoir
allocations to the available storage. MCM = 106 m3.
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0 and 1, where 1 indicates no water losses and the absence
of spills. Greater spills result in more water lost to the ocean
and smaller values for SC. Although theoretically possible,
in practice the value of SC does not become negative, i.e.,
over the long-term, spills are always smaller than reservoir
allocation.
[15] The interannual optimization problem consisting of

two objective functions, (3) and (4), and two decision
variables, a and b in (1), was solved using an unconstrained
global multiobjective optimization algorithm [Vrugt et al.,
2003]. Within a single optimization run, this algorithm
generates a Pareto set of solutions that maximizes multiple
objective functions. The algorithm relies on two key fea-
tures. First, the fitness or optimality of candidate solutions is
evaluated using the Pareto strength approach of Zitzler and
Thiele [1999]. A score or fitness is assigned to each
candidate point, based on its position in the multidimen-
sional objective function space relative to other candidate
points. A point (or solution) that performs better than
another on all objectives is said to dominate the latter
(concept of Pareto dominance), and its fitness score will
depend on how many points it dominates. Second, the
search strategy that generates new solutions is based on a
Monte Carlo Markov chain (MCMC) sampler. In essence,
new candidate points or solutions are randomly drawn from
a multinormal distribution centered on the current points,
and are accepted if they attain better fitness than the current
points. Additional details are presented by Vrugt et al.
[2003].
[16] In the following section we discuss the annual

decision-making models that are nested within the interan-
nual optimization framework. These annual models deter-
mine reservoir releases, spills, groundwater pumping rates
and crop acreages.

3.2. Annual Optimization Model

[17] The purpose of the annual model is to determine
annual decisions of surface water and groundwater use and
cropping patterns in the district with the goal of maximizing
total annual profit from agriculture (Figure 1). On the basis
of available reservoir storage at the start of the year,
decisions are made on reservoir allocations, groundwater
pumping rates, and district-wide cropping patterns for the
upcoming growing season. As shown in Figure 3, the
annual surface water allocation for irrigation can be well
described by the linear rule (1) with a = 0.47 and b = 990. In
reality, cropping decisions are made by individual farmers
within the district, whereas reservoir releases are managed
by the National Water Commission (CNA). However, at the
start of the growing season in September, a Hydraulic
Committee, consisting of CNA representatives and local
water managers, convenes to draft a valley-wide water plan.
Even though farmers still have freedom to pick their crops,
they do so within the constraints of the annual plan of the
Hydraulic Committee. The annual optimization model
mimics this situation by making profit-maximizing deci-
sions on water use and cropping patterns as a single
hypothetical planner for the entire district. As a conse-
quence, the simulated crop mix is spatially uniform, which
guarantees that profit is distributed equally throughout the
district. Schoups et al. [2006] show that this formulation is
able to reproduce irrigated acreages and water use decisions
during the last 10 years.

[18] The annual model solves a nonlinear constrained
optimization problem,

maximize OFy xð Þ

subject to lx � x � ux and lF � F xð Þ � uF

ð5Þ

where OFy is the annual objective function for year y (i.e.,
total annual agricultural profit in the district), which depends
on the vector of decision variables xwith lower bounds lx and
upper bounds ux, and F is a vector of smooth linear and
nonlinear constraint functions also dependent on x. Simula-
tion models are used to calculate values for OFy and F as a
function of the decision variables x. Table 1 summarizes the
various constraints and simulation models used in the annual
optimization model. The crop production model calculates
crop yields as a function of the amount and the salinity of the
applied irrigation water. The canal model routes water and
salts through the main irrigation canals, and accounts for
diversions from and pumping into the canals. The reservoir
model consists of water balance equations for each of the
three reservoirs on the Yaqui River to compute monthly
reservoir storages as a function of inflows and outflows
(runoff, precipitation, evaporation, releases). Finally, a
regional groundwater model of the alluvial aquifer is used
to calculate the impact of irrigation and pumping on shallow
and deep groundwater heads. As opposed to the study by
Schoups et al. [2006], here the groundwater model is not part
of the annual optimization but instead is run annually to
update hydraulic heads, as shown in Figure 1. Pumping costs
are calculated based on simulated heads from the regional
groundwater model at the beginning of the year, with
monthly in-well drawdown corrections during the year.
[19] Decision variables include (1) monthly reservoir re-

leases from the two upstream reservoirs on the Yaqui River,
(2) annual groundwater pumping in 42 modules (manage-
ment units within the district) and into three main irrigation
canals within the district, and (3) seasonal district-wide
acreages for 10 crops. Cropping patterns are assumed to
be uniform within the district, and module-scale ground-
water pumping is downscaled to individual wells based on
well pumping capacities. Monthly spills from each reservoir
are also included as decision variables, and are only allowed
to occur when reservoirs are at full capacity. This is
achieved by including the total volume of reservoir spills
as an extra term in the objective function, as shown in
Table 1. Note that the spill term has a negative sign, such
that spills are minimized. The net effect is that spills only
occur when necessary, i.e., to avoid an infeasible problem:
when the reservoir is at full capacity spills are the only
option to keep reservoir storage at or below its upper limit.
The spill term in Table 1 is multiplied by a scaling factor
whose value is chosen sufficiently small to prevent the spill
term from dominating the profit-maximizing objective.
[20] Monthly releases from the downstream reservoir

(Oviachic) are calculated as a function of crop water de-
mand and groundwater use, and are implemented as con-
straints. Additional constraints are specified for irrigable
acreage, pumping capacities, reservoir storages, annual re-
lease from the downstream reservoir by (1), and field-scale
leaching from irrigation (Table 1). The integrated annual
simulation-optimization model includes a large number of
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parameters, related to energy costs for pumping, crop-
specific parameters, module-based parameters, reservoir
parameters, well parameters, and parameters for the ground-
water model (Table 2). The constrained nonlinear optimi-
zation problem represented by (5) is solved using the
large-scale gradient-based solver SNOPT [Gill et al.,
2002]. We refer to Schoups et al. [2006] for a detailed
description of the annual optimization model and a
comparison to historical management.

3.3. Input Parameters

[21] A large number of parameters related to surface water,
groundwater, and agronomics must be specified in the
integrated water management model (Table 2). A major
source of uncertainty is the future evolution of crop prices
and production costs, especially in view of large year-to-year
variations in the historical values of these parameters. For
example, the economic profitability of many crops may
change dramatically over the short term, making it difficult
to predict future changes or to select a representative year
for extrapolation. To account for the average behavior, we
used average crop prices and production costs from the last
10 years. These average values were then held constant for
the entire prediction period (20–30 years). The assumption is
that crop profitability will not change significantly from
average conditions. Ten crops were simulated, including
corn, wheat, cotton, vegetables, alfalfa, and citrus, and lower
and upper limits on crop acreages were determined based on
historical conditions. Each simulation starts at the beginning
of October 2005, and runs for either 20 years or 30 years into
the future. Initial values for water storage in the surface
reservoirs were based on actual conditions in September
2005. Initial hydraulic heads in 2005 were obtained by
prediction with the groundwater model starting from mea-
sured heads in 1995. Monthly Yaqui river runoff is specified
for each reservoir based on either historical data for the past
20 years (1986–2005) or synthetic data (30 year sequences)

generated by the stochastic streamflow model, which is
described in the next section. The historical period of
1986–2005 was selected because it incorporates the full
range of observed streamflow variability over the entire
historical record. Thirty years was selected for the stochastic
record length, because it is a standard time horizon for
planning purposes.
[22] Although significant uncertainty exists about future

crop prices and production costs, this source of uncertainty
is not considered here. Instead, crop prices and production
costs are treated as deterministic and constant parameters. In
reality, changes in crop profitability may eventually result in
permanent shifts in the types of crops grown in the Valley.
Handling these effects requires numerous assumptions and
is beyond the scope of the current study.

3.4. Computational Considerations

[23] The optimization problem discussed above consti-
tutes a computational challenge in terms of required com-
puting memory and processing speed, due to the long-term
nature of the problem (20–30 years) and due to its stochas-
tic nature. In this paper, the computational burden is
significantly reduced by (1) solving the problem more
efficiently using a hierarchical approach and (2) studying
the stochasticity of the problem due to uncertainty in
streamflow after applying interannual optimization using
Monte Carlo simulation. First, the hierarchical approach
effectively breaks up the problem into a number of smaller,
annual optimization subproblems, which are linked together
by an interannual optimization formulation over the entire
period. The interannual model contains only a limited num-
ber of decision variables, and is therefore computationally
manageable (Figure 1). Second, the original stochastic opti-
mization problem is converted into a deterministic one, by
first identifying optimal conjunctive use rules for a 20 year
historical streamflow record, followed by an assessment
of the reliability of these rules using Monte Carlo simulation
based on 100 30 year synthetic streamflow records.
[24] The resulting computational burden becomes man-

ageable. The hierarchical optimization and simulations for
the 20 year historical streamflow record were performed on
an Intel Xeon 3.6 GHz workstation with 4 Gb of RAM. Each
annual optimization followed by a 1 year groundwater
simulation (one cycle in the annual loop of Figure 1) took
on average 20 s. Therefore a 20 year optimization simulation
run for a given operating rule, i.e., fixed values for slope and
intercept parameters a and b in (1), took about 7 minutes
(20 cycles in the annual loop of Figure 1). The multi-
objective optimization algorithm generated 800 realizations
of parameters a and b, resulting in a total runtime of approx-
imately 90 hours. With regard to software, the computations
were performed by linking Excel/Visual Basic, which serves
as a user interface for the model, with (1) the multiobjective
optimization algorithm written in Matlab [Vrugt et al., 2003],
and (2) the simulation models [Schoups et al., 2006] and the
gradient-based optimization algorithm [Gill et al., 2002]
using Fortran-compiled dynamic link libraries.
[25] For the postoptimization Monte Carlo analysis, each

of the 31 Pareto solutions identified by the multiobjective
optimization were tested using 100 synthetic runoff records,
each 30 years long. This resulted in a total of 93,000 annual
optimizations and groundwater model runs, and a total
computing time of 21.5 days. However, the Monte Carlo

Table 2. Parameters of the Management Modela

Parameter Class Descriptionb

Costs energy cost (1); district annual fixed costs (2)
Crops crop prices (3); crop subsidy (3); crop production costs

(3); potential crop yield (3); water and salt stress
(4) parameters for each crop; irrigation efficiency
(2); crop irrigation schedule (2)

Modules module area (2); module water distribution efficiency (2)
Reservoirs parameters of the area-storage relationships (6);

precipitation (6) and evaporationc (6) depths for each
reservoir; monthly run-off into each reservoir (6),
assumed known for each sequential water year

Canals for each reach: length; width; slope and roughness
parameters; conductivity and thickness of the canal
bed material (2,5)

Groundwater monthly pump capacity (2); well elevation (5); aquifer
transmissivity (5,7); pump efficiency (2); groundwater
salinity (2); horizontal and vertical hydraulic
conductivities; groundwater storage parameters; drainage
parameters (5, 7)

aVarious data sources were used to estimate parameter values, as
indicated.

bData sources are as follows: 1, Comision Federal de Electricidad;
2, Yaqui Irrigation District; 3, Sagarpa; 4, Maas [1990]; 5, Addams [2004];
6, Comisión Nacional del Agua; 7, Schoups et al. [2005].

cAverage reservoir evaporation rates are used in the model; variability in
evaporation is not considered.
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calculations were performed in parallel on four Xeon work-
stations, resulting in an actual runtime of about 5.4 days.

4. Stochastic Streamflow Generation

[26] Best future management strategies critically depend
on how much runoff will occur in the Yaqui river system. In
view of the uncertainty of future runoff, a stochastic time
series model of Yaqui river flows was used to generate a
large number of equally probable streamflow realizations.
The optimization problem was then solved for each of these
realizations, and best management statistics were derived
based on all the optimization results. Thirty year monthly
streamflow time series for each of the three reservoirs on
the Yaqui river (Angostura, Novillo, and Oviachic) were
generated with the method of Srinivas and Srinivasan
[2005], called the hybrid moving block bootstrap multisite
model (HMM). The method combines the strengths of
parametric and nonparametric approaches to time series
analysis, i.e., it is simple and requires no assumptions about
the shape of the pdfs (nonparametric attribute) and as
opposed to simple bootstrapping it generates flows that lie
outside the minima and maxima of the historic record
(parametric attribute). The goal is to generate synthetic time

series of monthly streamflow at each of the three reservoirs
such that both univariate (mean, standard deviation,
autocorrelations) and multivariate (cross correlations) statis-
tics of the observed streamflow data are preserved. The
algorithm generates time series of monthly streamflow that
mimic both short-term and seasonal characteristics, and
long-term and cross-site correlations of the observed
streamflows. A block length of 4 years was selected to
account for multiyear correlations in the streamflow record,
which is necessary to simulate longer drought periods. A
further advantage of the nonparametric part of the algorithm
is that no assumptions are made about the normality of the
residuals. A detailed description of the different steps of the
algorithm is given by Srinivas and Srinivasan [2005].
[27] Forty years of monthly streamflow data at each of the

three reservoirs were used to calibrate the HMM model. The
three sets of streamflow data were corrected for upstream
reservoir releases such that they represented natural flows
only. Observed streamflow data were used to estimate the
model parameters (means, standard deviations, and lag 1
autocorrelation coefficients for each reservoir). The algo-
rithm was then used to generate 100 equally probable
30 year realizations of monthly streamflow time series at
each of the three reservoirs. These numbers were used in the

Figure 4. Comparison of generated (box plots) and observed (lines) streamflow (left) means and
(right) standard deviations. For display purposes, annual streamflow values were divided by 10.
MCM = 106 m3.
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optimization model to describe natural streamflow, and
were augmented with releases from upstream reservoirs
(see Table 1 for the reservoir water balance). It should be
noted that the generated streamflows do not account for
possible future effects of climate change that would result in
fundamental changes in the flow statistics.
[28] Results of the stochastic streamflow generation algo-

rithm are evaluated by comparing statistics of the generated
streamflow records to statistics of the observed streamflows
during the last 40 years. This is done for both annual and
monthly timescales, and for inflows into the three reservoirs
on the Yaqui River (Angostura, Novillo, and Ovaichic).
Figure 4 shows mean and standard deviations of observed
monthly and annual streamflows, as well as box plots of the
corresponding simulated streamflows. The seasonal pattern
of streamflow is obvious with recorded peaks during the
Monsoon season (July–September). Standard deviations are
proportional to mean flows, reflecting greater interannual
variation in wetter months. It can be seen that the simulated
streamflow values capture the seasonality of the observa-
tions. Short-term (within year) autocorrelations and cross
correlations were also well reproduced by the model (not
shown). Figure 5 shows how well the generated streamflow
realizations mimic observed drought characteristics of the
historical 40 year record. Four different drought indicators
are plotted, namely the maximum (drought) run length
(MARL) and the mean (drought) run length (MERL), and
the maximum run sum (MARS) and mean run sum (MERS),
as presented by Srinivas and Srinivasan [2005]. For a given
streamflow record, these are calculated as follows,

MARL ¼ max dl1; . . . ; dlmf g ð6aÞ

MARS ¼ max s1; . . . ; smf g ð6bÞ

MERL ¼ 1

m

Xm
i¼1

dli ð6cÞ

MERS ¼ 1

m

Xm
i¼1

si ð6dÞ

where dli is the length in years of the ith drought, si is total
deficit of the ith drought, and m is the number of droughts in
the record. A drought in this context is defined as a
continuous period during which flows into each of the
reservoirs are below their respective predefined truncation
levels. In Figure 5, truncation levels are taken as specified
fractions f of the mean annual streamflow. Drought deficit si
measures the magnitude by which flows are below the
truncation levels, by taking the difference between the actual
flows and the truncation levels and summing the result over
all reservoirs. The model does a reasonable job of repro-
ducing the drought characteristics of the historical record.
More severe droughts, corresponding to small f values, are
better preserved than less severe ones (larger f ). Never-
theless, the model reproduces the recent 8 year drought
(MARL = 8 for f = 0.9–1.0), but also produces realizations
that contain droughts that are both longer and shorter than
this historical drought.

5. Results and Discussion

[29] Discussion of the results is divided into two main
parts. First, optimization results identifying optimal operat-
ing rules for the historical runoff time series are discussed.
This is followed by a postoptimization evaluation of the
performance of the optimal operating rules identified in the
first part, based on synthetic streamflow realizations.

Figure 5. Comparison of generated (box plots) and observed (lines) drought characteristics of
streamflow, as defined in (6): maximum run length (MARL), maximum run sum (MARS), mean run
length (MERL), and mean run sum (MERS).
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Figure 6. (a) Pareto trade-off curve between sustainability and spill control, as measured by the indices
in (3) and (4), generated by the multiobjective optimization and (b) the corresponding slopes and
intercepts of the Pareto optimal operating rules. The historical streamflow record for the last 20 years
(1986–2005) was used (Figure 3). Each solid diamond corresponds to a particular operating rule of the
form (1). Shaded diamonds indicate rules of special interest, corresponding to numbers in Table 3.

Figure 7. Detailed results for selected operating rules using (a) the historical streamflow record,
showing time series of (b) reservoir storage, (c) irrigated acreage, (d) spills to the ocean, (e) reservoir
allocation to the district, and (f) groundwater pumping for irrigation. Results are shown for three rules,
corresponding to numbers in Table 3 and Figure 6. MCM = 106 m3.
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5.1. Optimal Historical Operating Rules for
Agricultural Sustainability and Spill Control

[30] Figures 6 and 7 show results of the interannual
optimization using the historical runoff time series. The
aim is to find operating rules of the form (1) that both
maximize sustainability of agricultural production during
droughts and minimize spills during wet periods. The
multiobjective optimization identified a Pareto trade-off
curve (Figure 6) between maintaining agricultural produc-
tion during droughts, as measured by the sustainability
index (3), and minimizing spills during wet periods of
increased runoff, as quantified by the spill control index (4).
Figure 6a indicates that for the historical time series it is not
possible to maximize the two conflicting objectives both at
the same time. Figure 6b shows how the optimal operating
rule varies as one moves along the Pareto curve. For
discussion, we selected five different operating rules, as
summarized in Table 3 and shown by numbers in Figure 6.
These include (1) the historical rule, (2) the minimum spill
rule, (3) the maximum sustainability rule, (4) a compromise
rule that yields intermediate levels of spills and sustainability,
and (5) a rule that results in near-optimal spill control. Time
series of historical runoff, reservoir storage, allocation,
groundwater pumping, irrigated acreage, and spills for three
of these rules are shown in Figure 7.
[31] When the emphasis is entirely on agricultural

sustainability without consideration of spills (rule 3), the
optimal operating rule that maintains agricultural production
during droughts is to allocate annual reservoir water to
irrigation in the district equal to 1542 � 106 m3 (Figure 6b
and Table 3). Since the optimal slope a is almost zero in this
case (Figure 6b and Table 3), this allocation is more or less
independent of how much water is available in the reservoir
at the start of the growing season (Figure 7e). The idea
behind this rule is to limit releases from the reservoir during
wet years, such that more water is available during
droughts. With the upper limit on reservoir allocation, the
remaining crop water demand is satisfied by ground-
water pumping at a rate of 300–400 � 106 m3 every year
(Figure 7f). Note that the maximum annual pumping capacity
is 450 � 106 m3. This operating rule results in a maximum
sustainability index of 0.98 for the historical record
(Figure 6a). There are two issues with using this rule
however. First, due to the imposed limit on reservoir
allocation of about 1600 � 106 m3 and a maximum
pumping capacity of 450 � 106 m3, crop production during
wet years is limited to winter crops to allow continued
production during droughts (Figure 7c). Second, an obvious
drawback is that by limiting reservoir allocation for

irrigation, too much water is being stored in the reservoirs
(Figure 7b). This excess storage results in significant spills
during wet periods (Figure 7d), as also evidenced by the low
value of the spill control index for this rule, namely 0.60
(Figure 6a). This means that according to (4), total spills
constitute 40% of all irrigation water releases during the
20 year historical period. In other words, the operating rule
that maximizes agricultural sustainability prescribes storing
water in the reservoirs for future droughts, which leads to
large losses and spills to the ocean.
[32] An alternative is to minimize spills without much

concern for agricultural production. The operating rule that
minimizes spills (rule 2 in Table 3 and Figure 6) results in a
spill control value of 0.85 and a sustainability index of 0.70
(Figure 6a). Therefore, using historical runoff, spills cannot
be avoided nomatter which operating rule is used. The reason
for this is that there is an upper limit on irrigated acreage and
hence crop water demand within the district. If runoff during
wet years is beyond the value that can be physically used for
irrigation in the district, then this additional water has to be
disposed of by spilling to the ocean. There is the possibility of
growing second crops during the summers, thereby essen-
tially doubling irrigated acreage and greatly increasing crop
water demand during wet years. However, under current
economic conditions corn is the only viable summer crop,
which has been limited to about 40,000 ha (20% of irrigable
land) based on historical conditions. Before 1995 soybean
was a major summer crop until a widespread whitefly
infestation in 1995 reduced soybean production in the Yaqui
Valley to essentially zero [Naylor et al., 2001]. Therefore the
absence of a viable summer crop such as soybeans increases
the risk of spills. For example, simulation results indicated
(Figure 7d) that spills were unavoidable during years 5–8
due to very large runoff volumes (Figure 7a). Since in our
analysis we are using the historical runoff record for the
period 1986–2005, the same runoff for years 5–8 occurred
historically during 1990–1993. There were actual spills in
the system during that time, namely in 1991 and 1992 (J. L.
Minjares, Comisión Nacional del Agua, Cuidad Obregón,
Mexico, personal communication, 2005). However, actual
spills amounted to 3558 � 106 m3, whereas simulated spills
during years 5–8 totaled 6213 � 106 m3. The difference
(2616 � 106 m3) corresponds to a difference in actual
(1990–1993) and simulated (years 5–8) reservoir allocation
which amounts to 2832 � 106 m3. The greater actual
allocation was largely due to an annual soybean production
of almost 100,000 ha compared to none in the model,
because soybeans are no longer a viable crop. Therefore,
after correcting for the differences in simulated and actual
reservoir allocations, the simulated spills using the mini-
mum spill rule correspond quite well with the actual spills
during 1990–1993.
[33] As expected, the linear operating rule that maximizes

spill control has both a large slope (a = 0.86) and a large
intercept (b = 1989 � 106 m3) to maximize reservoir
releases to the district within the limits of irrigated acreage
and summer crop profitability (Table 3 and Figure 6b).
Because of these limits, rules with larger slopes and
intercepts do not produce smaller spills. As a matter of fact,
Figure 6 suggests that there is a wide range of operating
rules that all result in a similar level of spill control, as
illustrated by the results for the historical rule (rule 1 in

Table 3. Selected Conjunctive Use Operating Rules, Specifying

Annual Reservoir Allocation RAy as a Function of Available Res-

ervoir Storage ASy at the Start of the Year Using a Linear Operating

Rule, RAy = a � ASy + ba

Index Slope a Intercept b Description

1 0.47 990 historical rule
2 0.86 1989 maximum spill control
3 0.02 1542 maximum sustainability
4 0.24 953 compromise rule
5 0.53 577 near-maximum spill control

aIndices correspond to numbers in Figures 6 and 8.
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Table 3 and Figure 6) and alternative rule 5. Consequently,
the entire variation of the Pareto trade-off curve is sampled
by moving from rule 3 (maximum sustainability) to rule 5
(near-optimal spill control. Figure 6b shows that this corre-
sponds to decreasing intercepts and increasing slopes.
[34] Given the trade-off between the sustainability and

spill control objectives, it is useful to examine compromise
solutions in between the two extremes discussed so far. The
Pareto trade-off curve in Figure 6 contains all the informa-
tion to select an alternative management strategy depending
on the relative preference that is given to the two objectives.
Although many solutions may be selected, we discuss here
one potentially useful alternative, rule 4 or the compromise
rule (Table 3 and Figure 6). This solution provides inter-
mediate spill control of 0.77, compared to the maximum
value of 0.85, and at the same time it also sustains
agricultural production during drought periods, as shown
by the sustainability index of 0.88 (compared to the
maximum value of 0.98). The corresponding reservoir
operating rule is defined by an intermediate slope and
intercept (Table 3 and Figure 6b). It allocates water more
dynamically than the sustainability maximizing rule, which
was independent of available storage, but more conservatively
than the spill-minimizing rule, resulting in intermediate levels
of reservoir storage, irrigated acreage, and spills (Figure 7).
[35] Finally, Table 4 shows the effect that the cutoff

irrigated acreage value has on calculated resiliency RES
and sustainability SUS indices. Remember in (2b) that this
cutoff was taken as 85%, i.e., a failure is recorded when the
irrigated acreage is smaller than 85% of total irrigable land.
As expected, the RES index is sensitive to the cutoff value
with larger cutoff values resulting in more failures and a
smaller value for RES, see (2b). Since the other two indices
that make up the sustainability index SUS by definition do
not depend on the cutoff value, SUS values are less sensitive
to the cutoff value (Table 4).
[36] In the following sections, runoff uncertainty is quan-

tified using the stochastic streamflow model, and perfor-
mance of the alternative management strategies that were
discussed here is evaluated for this uncertainty.

5.2. Postoptimization Evaluation of Performance of
Optimal Operating Rules Under Streamflow
Uncertainty

[37] The purpose of this section is to evaluate the perfor-
mance of the Pareto alternative management strategies that

were identified in the previous section. This is done bymeans
of a Monte Carlo analysis, whereby the model was run for
each of one hundred 30 year streamflow realizations that
were generated with the stochastic streamflow model in
section 4. The Monte Carlo simulation was repeated for each
of the 31 Pareto solutions in Figure 4a, each corresponding to
a particular linear operating rule (Figure 6b). Each 30 year
model run consisted of 30 consecutive annual optimizations
without running the interannual optimization (Figure 1),
since the operating rules were specified in advance. Hence
the Monte Carlo analysis consisted of 100 realizations �
30 years� 31 Pareto solutions = 93,000 annual optimizations
and groundwater model runs (Figure 1).
[38] Figure 8 presents trade-offs between corresponding

percentiles of the two objective functions, i.e., spill control,
SC, and agricultural sustainability, SUS. These curves are
similar to the deterministic results in Figure 6, except that
now different trade-off curves are obtained for each
percentile. For example, the 50% percentile curve indicates
the trade-off between the medians of SC and SUS. Note that
this median curve is shifted toward larger SUS values
compared to results for the historical 20 year streamflow
record (Figure 6a). This is likely due to the greater weight
given to the recent drought in the 20 year historical record,
compared to the generated streamflow time series, which
are based on a resampling of the entire 40 year historical
record. Nevertheless, the relative behavior of the different
selected operating rules in Figure 8 is the same as in
Figure 6a. In other words, spill control percentiles for the
spill-minimizing rule (rule 2) in Table 3 are greater than
those for all other rules. Therefore the results of the
postoptimization Monte Carlo analysis confirm the perfor-
mance of selected rules in the multiobjective optimization,
suggesting that our approach of first identifying optimal
rules based on the 20 year historical record was valid.

Table 4. Effect of Cutoff Value for Irrigated Acreage on the

Resiliency Index RES and the Overall Sustainability Index SUS,

Equation (3)a

Index Statistic
Cutoff Value

75% 85% 95%

RES average 0.98 0.96 0.92
RES standard deviation 0.04 0.06 0.09
RES minimum 0.77 0.67 0.57
RES maximum 1.00 1.00 1.00
SUS average 0.94 0.93 0.92
SUS standard deviation 0.08 0.09 0.10
SUS minimum 0.67 0.63 0.61
SUS maximum 1.09 1.09 1.09

aFor example, a cutoff of 85% means that a failure is recorded when
irrigated acreage in a certain year is less than 85% of total irrigable acreage.
Statistics are calculated for SUS and RES over all realizations and all Pareto
optimal operating rules.

Figure 8. Postoptimization Pareto trade-off curves be-
tween corresponding percentiles of the sustainability and
spill control indices for 100 realizations of 30 year synthetic
streamflow records. Results are shown for the 5%
(diamonds), 25% (squares), 50% (triangles), and 75%
(crosses) percentiles. Each solid diamond corresponds to a
particular operating rule of the form (1). Shaded diamonds
indicate rules of special interest, corresponding to numbers
in Table 3. The 50% percentiles correspond to the median
SC and SUS values.
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[39] Figure 9 shows histograms of the sustainability and
spill control indices for each of the one hundred 30 year
streamflow realizations, and for three selected operating
rules. The spill-minimizing rule results in large irrigated
acreages during wet periods, as shown by a peak in its SUS
histogram near 1. Values for SUS greater than 1 indicate that
summer crops are grown (up to an upper limit of 40,000 ha)
in addition to a full winter crop acreage. However, this rule
also yields a long tail of smaller SUS values, confirming that
not enough water is available to sustain agricultural
production during droughts. The SUS histogram for the
sustainability-maximizing rule on the other hand is entirely
centered on 1 with a very small low-end tail, indicating that
this rule creates maximum protection against droughts. As
discussed earlier, this is possible by pumping more
groundwater during wet periods, such that more surface
water is available during droughts. Note however, that some
small SUS values are unavoidable during extreme droughts.
The drawbacks of this strategy are the absence of summer
crops in wet periods, and many spills, as also shown in
Figure 9 by the wide histogram for spill control. The
compromise rule (Table 3) yields intermediate histograms
for both SUS and SC. The SUS histogram has a smaller low-
end tail compared to the spills-minimizing rule and the

SC histogram is shifted toward larger SC values compared
to the sustainability maximizing rule.
[40] These results can be used by water managers to

identify an optimal operating rule that gives desired levels
of sustainability and spill control. Although a particular
compromise rule was selected here, many different man-
agement strategies could be selected depending on end user
preference. For example, the Pareto trade-off curves in
Figure 8 may aid in negotiations to reach a compromise
solution for water management in the Yaqui Valley. The actual
final solution will depend on the preferences of the different
parties involved (farmers and water managers), in terms of
short-term versus long-term perspective and risk aversion.
[41] Finally, Table 5 shows the effects of three selected

rules on water table elevations and groundwater head
gradients near the coast. Shallow water tables pose a risk
of soil salinization by capillary rise and subsequent evapo-
ration, whereas landward groundwater head gradients may
result in seawater intrusion and groundwater salinization.
Since the compromise and sustainability maximizing rules
rely to a greater extent on groundwater pumping, they result
in lower water tables (Table 5). The trend in the coastal
groundwater head gradient is less clear, but none of the rules
apparently pose a risk of seawater intrusion, as suggested by

Figure 9. Postoptimization histograms of the sustainability and spill control indices for 100 realizations
of 30 year synthetic streamflow records and three selected operating rules from Table 3: maximum spill
control (rule 2), compromise rule (rule 3), and maximum sustainability (rule 4).
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positive values indicating groundwater discharge to the sea.
In an earlier study [Schoups et al., 2006] we found that
seawater intrusion only becomes an issue when additional
regional well capacity is installed beyond what is currently
available.

5.3. Discussion

[42] One potential drawback of our method, i.e., deter-
ministic optimization using a long historical record followed
by Monte Carlo testing of the resulting optimal rules, is that
the rules that were identified as (Pareto) optimal in the
interannual optimization are not necessarily optimal for the
streamflow realizations used in the Monte Carlo analysis. In
order to find optimal rules under uncertainty one would
need to solve the optimization problem for each of the
streamflow realizations (as in the work of Young [1967]) or
find an optimal strategy for all synthetic streamflow realiza-
tions at once. In either case, the computational burden
would be significantly larger.We instead test the performance
and reliability of the Pareto optimal rules on a large number of
streamflow realizations. The advantage is a significant
reduction in computational load. In addition, since the Pareto
set of solutions spans a wide range of possible strategies
(slopes from 0 to 0.8, intercepts from 500 to 2,000� 106 m3,
see Figure 6), the Monte Carlo analysis is more robust than
when a single optimal solution would be tested.
[43] Another potential drawback is that, while in reality

intra-annual decisions are made under uncertainty, the
model finds optimal monthly allocations assuming that the
monthly streamflows for the entire year are known before
the fact. This may lead to optimistic results compared to
what is possible in reality. However, we believe that this
effect is limited because (1) intra-annual decisions are to a
large extent constrained by the annual allocation, which is
determined as a function of available storage at the start of
the year through the linear operating rule (1), and (2) in
reality actual monthly allocations may be adjusted to adapt
to actual conditions throughout the year.
[44] The interannual optimization may be too severely

constrained by the linear operating rule in (1). A more

flexible rule, e.g., a nonlinear or piecewise linear rule, could
perhaps partially alleviate the trade-off between spill control
and sustainability in Figure 6. This would make it possible to
identify two separate rules (with different slopes and inter-
cepts) for droughts and wet periods. By specifying a linear
rule it was possible to keep the number of decision variables
in the interannual optimization model to a minimum, but it
may have limited the flexibility of the formulation.
[45] In (3) it was assumed that the decision maker attaches

equal importance to the three aspects of the system’s sustain-
ability by a priori setting values for the weights, w, equal to
1/3. Table 6 illustrates the effect of the weight values on the
results. It shows statistics for the three sustainability indices
(REL, RES, IVUL), computed from the results for all
100 realizations and all 31 Pareto solutions. We find that
(1) IVUL has the greatest variability, and thus is the best
index to separate good from bad management and (2) there
is significant correlation between RES and IVUL, indicating
that these two indices are somewhat complementary. These
results suggest that for the Yaqui Valley IVUL is the most
important index to include, and that the other indices and
their weights have a secondary effect.

6. Summary and Conclusions

[46] We presented a methodology to aid in identifying
optimal conjunctive use rules for water management in
irrigated agriculture, with a case study in the Yaqui Valley,
Mexico; a region that historically has produced 40% of
Mexican wheat. Operating rules were parameterized as
linear relations between initial reservoir storage at the start
of the growing season and maximum annual reservoir
release. Each rule was characterized by a slope and intercept.
A hierarchical optimization approach was used, consisting
of multiobjective long-term optimization for spill control
and agricultural sustainability coupled to annual profit
maximization using a gradient-based algorithm. Optimiza-
tion results using a 20 year historical streamflow record
yielded a Pareto trade-off curve between providing mini-
mal spills during wet periods and sustaining agricultural
production during droughts. In general, operating rules
with near-zero slopes and intercepts around 1500 � 106 m3

resulted in a maximum level of sustainability by promoting
groundwater use during wet periods. By gradually increasing
the slope of the linear operating rule, one moves along the
Pareto front from maximum sustainability to minimum
spills. In between these two end-member rules, one finds a
set of compromise rules that provide intermediate levels of
sustainability and spills.
[47] The second objective of our study was to evaluate

the performance of these operating rules under streamflow
uncertainty. A stochastic streamflow model for the Yaqui
River was used to generate one hundred 30 year streamflow

Table 5. Minimum Water Table Depths and Coastal Groundwater

Head Differences for Selected Operating Rulesa

Index Rule
Minimum Water
Table Depth, m

Minimum
Groundwater

Head Difference, m

2 maximum spill control 1.45 0.15
3 maximum sustainability 1.66 0.17
4 compromise rule 1.53 0.12

aA positive groundwater head difference indicates that groundwater
flows toward the coast (no seawater intrusion). Indices correspond to
numbers in Figures 6 and 8.

Table 6. Statistics of the Three Sustainability Indices Defined in (2), Computed From All Results (100 Streamflow Realizations and

31 Pareto Optimal Solutions)

Index Average Minimum Maximum Coefficient of Variation
Correlation Coefficient

REL RES IVUL

REL 1.05 0.93 1.14 0.04 1.00 0.43 0.31
RES 0.96 0.67 1.00 0.06 0.43 1.00 0.77
IVUL 0.78 0.20 1.14 0.26 0.31 0.77 1.00
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realizations, based on a historical 40 year record of monthly
streamflows at each of the three reservoirs. The model
preserves observed means, standard deviations, and corre-
lations in time and space. The performance of 31 Pareto
alternative management strategies was then evaluated using
a Monte Carlo analysis, wherein the optimization model
was run for each of one hundred 30 year streamflow
realizations. Results confirmed the performance of selected
operating rules in the multiobjective optimization using the
historical streamflow record, suggesting that our approach
of first identifying optimal rules based on the 20 year
historical record was valid. We quantified the effects of
streamflow uncertainty on the performance of the optimal
rules, which can be taken into account when planning water
management for agricultural sustainability and spill control.

Notation

CropAcy,m,cr crop acreage in year y and module m
for crop cr: decision variable.

CPy,cr crop price in year y for crop cr:
parameter

Yy,m,cr actual yield of crop cr in year y and
module m, calculated by the crop
production model as a function of
irrigation water amount and salinity.

CSy,cr subsidy for crop cr in year y: parameter.
CCy,cr production cost for cr in year y:

parameter.
DCy,m water cost for module m in year y,

which includes both fixed administra-
tive costs and variable pumping costs;
pumping costs depend on actual head
drawdowns calculated by the regional
groundwater model, plus a correction
for in-well drawdown.

a scaling factor: parameter
Spilly,t,k spill in year y, month t, from reservoir

k: decision variable.
CropAcTot total irrigable land: parameter.
Pumpy,t,w groundwater pumping rate in year y,

month t, from well w: decision variable.
PumpCapw monthly pumping capacity for well w:

parameter.
ROy,t,k Yaqui river runoff (streamflow) in year

y, month t, into reservoir k: parameter.
Py,t,k rainfall in year y, month t, into reservoir

k: parameter.
Ey,t,k evaporation in year y, month t, from

reservoir k: parameter.
Ay,t,k reservoir surface area: calculated as a

function of reservoir storage by the
reservoir model.

fc coefficient describing water losses
between two sequential reservoirs:
parameter.

Qy,t,k release in year y, month t, from
reservoir k: decision variable.

Qy,t,k
fix fixed reservoir releases for urban users

and priority right farmers in the Yaqui
Valley, in year y, month t, from
reservoir k: parameter.

Smin,k and Smax,k lower and upper limits on monthly
storage in reservoir k: parameter.

CWy,t,m surface water demand in year y, month
m, from module m.

Qleak,y,t,r irrigation canal seepage loss in year y,
month t, from reach r, calculated by the
canal model.

Qmin and Qmax lower and upper limits on monthly
releases from the downstream reser-
voir: parameter.

QAmin and QAmax lower and upper limits on annual
releases from the downstream reser-
voir: parameter.

IrrigEffcr irrigation efficiency for crop cr: para-
meter accounting for nonuniform infil-
tration at the field scale.

DPy,m,cr deep percolation losses in year y,
module m, for crop cr, calculated by
the crop production model. accounts for
deep percolation losses due to subopti-
mal crop ET caused by salinity stress.

AWy,m,cr applied water in year y, module m, for
crop cr.

LCHmax upper limit on the field-scale leaching
fraction for irrigation: parameter.
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