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Abstract

Quantifying crop production at regional scales is critical for a wide range of applications, including management and carbon
cycle modeling. Remote sensing offers great potential for monitoring regional production, yet the uncertainties associated
with large-scale yield estimates are rarely addressed. In this study, we estimated crop area, yield, and planting dates for 2 years
of Landsat imagery in an intensive agricultural region in northwest Mexico. Knowledge of crop phenology was combined with
multi-temporal imagery to estimate crop rotations throughout the region. Remotely sensed estimates of the fraction of absorbed
photosynthetically active radiation (fAPAR) were then incorporated into a simple model based on crop light-use efficiency to
predict yield and planting dates for wheat. Uncertainty analysis revealed that regional yield predictions varied up to 20% with
the method used to determine fAPAR from satellite, but were relatively insensitive to modeled variability in crop phenology,
light-use efficiency, and harvest index (the ratio of grain mass to aboveground biomass). Comparisons of satellite-based and
field-based estimates indicated errors in regional wheat yields of less than 4% for both years of data. In contrast, planting date
calculations exhibited uncertainties of up to 50% using a sparse, three-date sampling from satellite-based sensors. A simplified
model was also developed to explore yield predictions using only one date of imagery, demonstrating high accuracies depending
on the date of image acquisition. The spatial and temporal distributions of crop production derived here offer valuable informa-
tion for agricultural management and biogeochemical modeling efforts, provided that their uncertainties are well understood.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Regional estimates of crop yield are desirable for
managing large agricultural lands and determining
food pricing and trading policies (Macdonald and
Hall, 1980; Hutchinson, 1991). In addition, knowl-
edge of crop extent and productivity can provide
critical inputs to meteorological and biogeochem-
ical models. For example, modeled contamination
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of water with nitrate is strongly dependent on the
spatial distributions of crops within an agricultural
region (Beaujouan et al., 2001). The regional carbon
(C) balance of agriculture is of particular interest to
global biogeochemical research and greenhouse gas
emission policy, as increased production and reduced
tillage have led to significant accumulations of C in
several field studies (Lal et al., 1995; Buyanovsky
and Wagner, 1998). Quantifying the impacts of man-
agement practices on regional C balance is critical for
establishing emission policies, yet a reliable method-
ology for assessing regional C dynamics remains to
be realized (Subak, 2000; Post et al., 2001).

C storage in agriculture is defined as the differ-
ence between C fluxes into and out of the soil, since
annual harvesting prevents any long-term storage in
aboveground biomass. Inputs are provided by crop
residues remaining after harvest, while outputs consist
of soil heterotrophic respiration (Rh) and leaching of
dissolved organic carbon (DOC) (Fig. 1). Numerous
models have been developed to simulateRh and DOC
leaching processes and their responses to management
(e.g.,Parton et al., 1994; Neff and Asner, 2001). How-
ever, most models rely on relatively simple treatments
of input fluxes (but seeAsner et al. (2001)), which can
exhibit high spatial and temporal variability in agroe-
cosystems (Plant et al., 1999).

Fig. 1. A simple representation of the C cycle in agriculture. Soil
C storage is the balance between input and output fluxes, with
input fluxes controlled by the amount of total NPP and the frac-
tion removed as harvest (HI). Output fluxes include heterotrophic
respiration by microbes (Rh) and DOC leaching and stabilization
at depth, neglecting fluxes due to erosion. Knowledge of spatial
and temporal variations in NPP is needed for both accurate yield
estimates and quantifying C balance.

An important step towards quantifying regional C
balance is therefore an accurate assessment of net CO2
uptake in crop growth, termed net primary production
(NPP). This task consists of (1) identifying the spatial
extent of different crops and (2) estimating produc-
tion per unit area of each crop. Regional crop area
and NPP estimates based on field reports are often ex-
pensive, prone to large errors, and cannot provide the
real-time, spatially explicit estimates or predictions of
yield needed to establish food policies or monitor C
fluxes (Reynolds et al., 2000). Satellite remote sensing
is an attractive tool for crop area and NPP estimates
because it provides spatial and temporal information
on the location and state of crop canopies (Kumar and
Monteith, 1981; Moulin et al., 1998). However, suc-
cessful use of remote sensing requires that remotely
measured radiance can be accurately related to phys-
ical plant properties and that these properties can
then be related to NPP or yield. Hereafter, production
is discussed mainly in terms of yield for compari-
son with field data, although NPP is directly related
to yield according to the fraction of plant biomass
that is harvested (harvest index, HI) and the carbon
fraction of biomass by weight (∼45%, Schlesinger,
1997).

The dynamics of regional yields and agricultural
NPP are exemplified in the Yaqui Valley, an in-
tensive wheat-based agricultural region in Sonora,
Mexico. The Yaqui Valley consists of approximately
226,000 ha between the Rio Yaqui and Rio Mayo,
and is adjacent to the Gulf of California (27◦N,
110◦W; Fig. 2). The home of the Green Revolution, it
is agro-climatically representative of∼34 million ha
of irrigated spring wheat, where over 40% of the
developing world’s wheat is produced (Pingali and
Rajaram, 1999). Farmers in Yaqui Valley typically ap-
ply 250 kg nitrogen (N) ha−1 and irrigate wheat crops
4–5 times during the growing season, resulting in
some of the highest wheat yields in the world (FAO,
1997), as well as extremely high nitrogen trace gas
(N2O, NO) fluxes (Matson et al., 1998). Secondary
crops include safflower, spring cotton, fall maize and
summer soybean, although changing water policies
and reduced water availability have caused farmers to
abandon summer cropping since 1998. Management
changes from field to field and year to year emphasize
the need for a regional perspective to estimate yields
and NPP.
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Fig. 2. Yaqui Valley study region, as seen from Landsat ETM+ band 3 image on February 26, 2000. Wheat fields are dark due to the
strong absorption by vegetation at visible wavelengths. A GIS coverage outlining the Yaqui agricultural district is overlaid in white.

1.1. Remote sensing of yield

A simple and useful paradigm for modeling crop
yield with remote sensing is derived fromMonteith
(1972, 1977):

Yield = APAR × ε × HI (1)

where APAR is the total amount of photosynthetically
active radiation (PAR) (MJ from 400 to 700 nm) ab-
sorbed by a canopy throughout the growing season,
ε the light-use efficiency in units of g biomass MJ−1

PAR, and HI the harvest index or ratio of grain mass
to aboveground biomass. In this case, as in most stud-

ies, HI andε refers only to aboveground biomass and
does not include roots.

Numerous studies have demonstrated thatε is a rel-
atively constant property of plants, since light harvest-
ing is often adjusted to the availability of resources
needed to use the absorbed light (Monteith, 1977;
Russell et al., 1989; Bloom et al., 1985; Field et al.,
1995). Thus, variations in plant production should be
reflected mainly by changes in APAR, which can be
monitored from remote sensing platforms (Kumar and
Monteith, 1981). However, uncertainty in each of the
variables inEq. (1)must be addressed to determine if
this approach can be used for accurate yield estimates,
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or if a more mechanistic treatment of plant light-use
is needed (Moulin et al., 1998). For example, variabil-
ity in ε and HI can result from a variety of nutrient,
water, and temperature stresses (Russell et al., 1989;
Hay, 1995; Sinclair and Muchow, 1999), but the de-
gree to which these factors affect yield estimates in
highly managed systems is unknown.

Measurements of APAR represent another source
of error for yield estimates, and are usually estimated
as the product of incident PAR and the fraction of
photosynthetically active radiation (fAPAR) absorbed
by the canopy, summed over the growing season:

APAR =
∑

(PAR× fAPAR)�t (2)

Several field studies have used daily measurements of
PAR and fAPAR to assess crop production (Gallagher
and Biscoe, 1978; Garcia et al., 1988; Gallo et al.,
1993), but satellite observations are generally not
available at daily frequencies. Global sensors, such
as the advanced very high resolution radiometer
(AVHRR), offer fAPAR estimates at daily to biweekly
intervals, but the low spatial resolutions (>1 km) of
these sensors cannot capture relevant spatial patterns
within agricultural regions. Higher resolution satel-
lites, such as Landsat Thematic Mapper (TM) with
30 m resolution, are usually only available a few times
per year for a given location. This is due to the lower
revisit time of Landsat-class sensors (∼16 days) and
the frequency of cloud cover. To utilize the high spa-
tial resolution of Landat-type sensors, estimates from
select dates throughout the growing season can be
used with a predefined time-profile of fAPAR based
on field studies to estimate daily fAPAR, which can
then be used inEq. (2) (e.g., Leblon et al., 1991).
Since high spatial resolution is essential for studying
regional patterns in NPP, this is the approach adopted
in this study.

However, differences between field and remote
sensing measurements of fAPAR introduce another
source of uncertainty when combining the two to
estimate yield. In the field, fAPAR is most often
substituted with the fraction of intercepted photosyn-
thetically active radiation (fIPAR), calculated from
PAR measurements above and below the canopy:

fIPAR = PARabove− PARbelow

PARabove
(3)

The functional fAPAR inEq. (2), i.e., PAR absorbed
by photosynthetic tissues, is usually within 10% of fI-
PAR (Russell et al., 1989) but can differ significantly
due to canopy and soil reflectance (Prince, 1991)
and absorption by non-photosynthetic tissues (Asner
et al., 1998), with the latter becoming very significant
during senescence (e.g.,Asrar et al., 1984). Remote
sensing estimates of fAPAR (e.g.,Asrar et al., 1984;
Steinmetz et al., 1990; Wiegand et al., 1992) have
their own uncertainties due to imperfect relationships
between combinations of red and near-infrared (NIR)
reflectance, called spectral vegetation indices (SVI),
and fAPAR. Some commonly employed SVI include
the simple ratio (SR) and normalized difference veg-
etation index (NDVI):

SR= NIR

red
(4)

NDVI = NIR − red

NIR + red
(5)

Several authors suggest on theoretical and empiri-
cal grounds that SR is best related to fAPAR (e.g.,
Steinmetz et al., 1990; Serrano et al., 2000), while
others have supported the use of NDVI (Asrar et al.,
1984; Gallo et al., 1993). Still others indicate that an
average of SR and NDVI performs the best (Los et al.,
2000), leaving great ambiguity as to the appropriate
measure of fAPAR.

The goal of this study was to quantify the accu-
racy and precision of regional crop rotation, yield and
planting date estimates from remote sensing. Yield
and planting date estimates focused on wheat, with
only area estimated for other crops, since wheat is by
far the dominant crop in Yaqui Valley (in terms of
food supply, farmer income and NPP;Naylor et al.,
2001). Uncertainties inε, HI and both field and re-
motely sensed estimates of fAPAR for wheat were de-
fined and propagated with a Monte Carlo technique
to quantify the resulting confidence in estimates, and
thereby assess the true utility ofEq. (1) for regional
yield predictions. Model results were then compared
to field-based planting and harvest reports. In addi-
tion, yield estimates using a single image and several
simplifying assumptions were considered to assess the
impact of limited data availability.
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2. Methods

2.1. Field measurements

To determine the time-profile of APAR for wheat,
field measurements of incident solar radiation
and canopy interception were recorded during the
1994–1995 growing season for bread wheat grown on
research plots at the International Maize and Wheat
Improvement Center (CIMMYT) in Yaqui Valley.
All plots were planted on November 28, 1994 and
were irrigated five times according to common farmer
practices. Four separate plots grown at varying levels
of fertilization (0, 85, 167 and 250 kg N ha−1) were
assessed to determine the effect of nutrient levels on
fAPAR, ε and HI. Daily solar radiation was measured
by a pyranometer (LI-200SA, Li-COR, Lincoln, Ne-
braska), with downwelling PAR values computed by
multiplying solar shortwave radiation by 0.48 (Szeicz,
1974). fIPAR was measured within 1 h of local noon
on January 4, 12, 19, February 1, 11, 14, 22, 28,
and March 7 and 23, 1995, using a canopy analyzer
(Sunfleck Ceptometer, Decagon, Pullman, WA) above
and below the canopies. The daily fIPAR time-profile
was estimated using linear interpolation between
measurements, with time defined by growing degree
days (GDD) rather than calendar days to account
for changes in crop development due to accumulated
temperature (Ritchie and NeSmith, 1991).

Field fIPAR was converted to fAPAR by assuming
that 5% of intercepted light is reflected or absorbed
by non-photosynthetic tissues when the canopy is
completely green (Asner et al., 1998), and that this
percentage increases during senescence (Asrar et al.,
1984; see Fig. 2B). To determine fAPAR during
senescence, a simple linear interpolation from 5%
at the onset of senescence to 100% at physiological
maturity, when wheat is fully senesced, was used to
define the fraction of fIPAR that is not absorbed by
photosynthetic elements. The onset of senescence was
observed between 1 and 2 weeks before maturity in
field studies, although uncertainty in the date of onset
was also considered (see below).

In addition to radiation measurements, final biomass
and grain yield were evaluated to determine values ofε

and HI. Plots were hand harvested after physiological
maturity, with total wet biomass for the harvested area
(4.5 m2) measured in the field and a sub-sample of

100 stems taken to determine moisture content. After
several days of sun drying, threshing took place and
grain weight was recorded.ε was determined as the
ratio of biomass to APAR, while HI was equal to grain
mass (0% moisture) divided by total dry biomass.

2.2. Satellite measurements of croplands

Two separate years of satellite data were tested in
this study. Landsat 5 TM images were acquired for
1993–1994 on October 12, 1993, and February 1, April
6, and July 27, 1994; Landsat 7 Enhanced Thematic
Mapper Plus (ETM+) images were acquired on Octo-
ber 12 and December 24, 1999, and February 26 and
April 16, 2000 for the 1999–2000 season. To deter-
mine the location and areal extent of each major crop,
the images were first coregistered to within one pixel
error using ground control points, and then georef-
erenced by matching geographic information system
(GIS) road and drainage canal coverages to image fea-
tures. All pixels within the Yaqui Valley agricultural
district were defined using an additional GIS layer of
district boundaries (seeFig. 2).

The SR was used to distinguish pixels with ac-
tively growing crops from bare soil in each image,
using a simple threshold value (seeFig. 4 below).
Crop rotations were then determined by classifying
the time-profile of crop presence (Table 1). For ex-
ample, pixels with high SR in the October and July
images from 1993 to 1994 were interpreted as fall
maize–summer soybean rotations, while pixels with
high SR in February and July were considered win-
ter wheat–summer soybean rotations. This approach
ignored the presence of senescent canopies and crops
not included inTable 1, but provided a simple means
to estimate crop area with the available images.

2.3. Yield and planting date estimates

To determine yield, fAPAR was calculated in each
image as a linear function of SR, followingSellers
et al. (1996):

fAPAR = (SR− SRmin)(fAPARmax − fAPARmin)

(SRmax − SRmin)

+ fAPARmin (6)

where SR is the value of the simple ratio at a given
pixel, SRmin and SRmax correspond to the second and
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Table 1
Growing season of major crops in Yaqui Valley, and greenness (Y/N) during image acquisition dates used to determine crop areas

Crop Growing season October 12 December 24 February 1 February 26 April 6 April 16 July 27

Maize August–January Y/Na Y N N N N N
Wheat November–May N Y/Na Y Y Y/N b Y/Nb N
Soybean May–September N N N N N N Y

a Some fields may remain in early stages of development and thus may not appear green.
b Some fields may already be senescent at this date and thus may not appear green.

98th percentile of SR for the entire agricultural re-
gion, and fAPARmin and fAPARmaxare defined as 0.01
and 0.95, respectively. SRmin and SRmax were com-
puted separately for each image to avoid errors due
to structural differences between crops and different
stages of development. As discussed, several studies
suggest that replacing SR with NDVI inEq. (5) re-
sults in more accurate fAPAR estimates (Choudhury,
1987; Goward and Huemmrich, 1992). We therefore
calculated fAPAR both ways and compared the result-
ing yield estimates. We also used fAPAR computed
as the average fAPAR from SR and NDVI, follow-
ing Los et al. (2000). The three methods are here-
after referred to as fAPAR−SR, fAPAR−NDVI, and
fAPAR−(SR−NDVI), respectively.

The satellite estimates of fAPAR at each pixel
were then used to adjust the field-based time-profile
of wheat fAPAR, and thereby estimate daily fAPAR
throughout the growing season. In this case, since at
least two images were available for both the years
(February 1 and April 6 for 1993–1994; December
24, February 26 and April 16 for 1999–2000), we
varied two properties of the fAPAR profile; the initial
day of growth or planting date (d), which is important
for determining the light and temperature regime for
plant development, and the maximum canopy fAPAR
(fmax). fmax andd were determined for each pixel as
the combination which minimized the sum of squared
differences between the fAPAR profile and satellite
estimates. APAR was then calculated fromEq. (2)
using the computed profile of fAPAR with station
measured daily PAR, and yield was determined from
Eq. (1).

As mentioned, a primary goal of this study was to
quantify potential uncertainties in yield and planting
date estimates from Landsat data. We first considered
uncertainties in fixed model inputs (i.e., inputs that
did not change from image to image), including the

length of senescence and the method used to estimate
satellite fAPAR. For simplicity, three dates of senes-
cence onset (1, 2 and 3 weeks before maturity) and
three fAPAR models (fAPAR−SR, fAPAR−NDVI
and fAPAR−(SR−NDVI)) were tested, with a total
of nine possible combinations for each year. For each
combination, we then quantified uncertainties arising
at the image scale, namely potential bias in fAPAR
estimates, and at the pixel scale, including variance
in fAPAR andε × HI. Bias in fAPAR was considered
because errors in fAPARmin, fAPARmax, SVImin and
SVImax in Eq. (6)can lead to systematic over- or un-
derestimates of fAPAR within an image. Variance in
fAPAR, or scatter in the linear relationship inEq. (6),
arises from many sources including variable back-
ground reflectance, atmospheric effects and canopy
structural differences (Myneni and Williams, 1994).
Variance inε × HI is due to the factors discussed in
Section 1, and was defined here as observed variabil-
ity within the different N treatments. The quantity
ε × HI was used rather than treatingε and HI sepa-
rately to accommodate any dependence between them
in field data.

The impacts of the above listed uncertainties on
yield and planting date estimates were quantified us-
ing a Monte Carlo technique. Model predictions were
repeated many times, each time with random pertur-
bations to fAPAR,ε and HI generated from distri-
butions representing their variability. Normally dis-
tributed random variables with standard deviations (σ )
of 0.05 and 0.10 were used to generate fAPAR bias
and scatter, respectively, whileσ for ε × HI was de-
rived from field results (see below). A large number of
model runs was performed(n = 100) for each pixel
to ensure that the computed mean andσ for yield and
planting date converged. Values ofσ for fAPAR bias
and scatter were conservatively largely based on pre-
vious studies (e.g.,Asrar et al., 1984; Steinmetz et al.,
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1989;Wiegand et al., 1992; Los et al., 2000), so that
the resulting uncertainty in yield and planting date es-
timates were also considered conservative.

2.4. Single image yield estimates

The utility and optimal timing of a single image
for yield estimates are important to consider for fu-
ture applications, since factors such as expense and
cloud cover often inhibit satellite data availability. In
this context, a simple model was also tested in which
the planting date was assumed constant for all fields,
and the estimated fAPAR from the February image
was used to calculatefmax in Eq. (6) and thus yield.
The sensitivity of yield estimates to planting date was
considered by calculating yield for each planting date
from November 15 to January 15. In addition, the sen-
sitivity to image date was assessed by comparing re-
sults for the 2 years, where 1994 and 2000 had an
early and late February acquisition date, respectively.

3. Results and discussion

3.1. Field measurements

Differences between N treatments were reflected in
field measurements of fIPAR, as predicted by the re-
source balance perspective (Fig. 3A). The differences
were the greatest between the control (0 kg N ha−1)
and 85 kg N ha−1 treatments, and noticeably smaller
between the higher N treatments. Biomass differences
were similarly greater between the lower N treatments
(Table 2), indicating a decreasing marginal return at
high levels of N application.ε values computed from
integrated growing season APAR and final biomass
measurements (2.2–2.4 g MJ−1 PAR) were similar
to previous studies of wheat, which generally report
light-use efficiencies in the range of 2–3 g MJ−1 PAR
(Gallagher and Biscoe, 1978; Garcia et al., 1988;
Kiniry et al., 1989).

Analysis of field data revealed no apparent de-
pendence ofε or HI on N treatment (Table 2). This
finding is consistent with several studies that show N
has a small and often insignificant effect on light-use
efficiency (Garcia et al., 1988; Steinmetz et al., 1990;
Serrano et al., 2000). Variability of ε and HI within
different treatments was generally low (∼2 and 3% of

Fig. 3. (A) Measured fIPAR for four different nitrogen (N) treat-
ments throughout 1994–1995 growing season. Dates of anthesis
(flowering) and maturity observed in the field are shown. fIPAR at
maturity was not directly measured, but interpolated linearly from
the previous two measurements. fIPAR at emergence was assumed
to be zero. (B) A comparison of measured fIPAR (solid line)
and estimated fAPAR for the 250 kg N ha−1 treatment, assuming
1 (dotted), 2 (dashed) and 3 weeks (dashed-dot) of senescence.
fAPAR prior to senescence was assumed 95% of fIPAR, resulting
in a maximum fAPAR of 0.95.

their respective means), and variability of their prod-
uct was also low (3% of the mean), indicating that
higher harvest indices partially compensated for low
light-use efficiencies. This result may reflect a physi-
ological mechanism for decreased HI with increased
production (Hay, 1995), or may simply express the
codependence ofε and HI on biomass measurements,
with underestimates in biomass leading to lowε
but high HI. Regardless,ε × HI was described by a
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Table 2
Field estimates and variability of HI and light-use efficiency (ε) for four nitrogen (N) treatments (values were calculated assuming 1, 2
and 3 weeks of senescence)

N treatment Biomass
(g m−2)

Yield HIa APAR1
b,c ε1

d ε1 × HI APAR2 ε2 ε2 × HI APAR3 ε3 ε3 × HI

0 1239.4 488.7 0.394 569 2.178 0.859 543 2.283 0.900 517 2.397 0.945
85 1489.1 543.8 0.365 658 2.263 0.826 626 2.379 0.869 595 2.503 0.914

167 1480.5 551.1 0.372 689 2.149 0.800 654 2.264 0.843 622 2.380 0.886
250 1509.9 560.7 0.371 694 2.176 0.808 659 2.291 0.851 625 2.416 0.898
Mean 1429.7 536.1 0.376 652.5 2.191 0.824 620.5 2.304 0.866 589.8 2.424 0.911
Standard

deviation.
127.5 32.4 0.012 57.9 0.050 0.026 53.7 0.051 0.026 50.3 0.054 0.026

a Harvest index: ratio of grain mass to aboveground biomass (unitless).
b Absorbed photosynthetically active radiation for entire growing season (MJ PAR).
c Subscript indicates assumed date of onset of senescence in weeks before maturity.
d Light-use efficiency (g MJ−1 PAR).

normal distribution withσ = 3% of the mean (with
the mean determined by the weeks of senescence) for
the Monte Carlo analysis.

3.2. Crop rotations

Fields with actively growing crops were clearly dis-
tinguished from bare soils using a threshold of SR=
2, due to the bimodal distribution of SR within the
agricultural region (Fig. 4). The estimated area of har-
vested crops from this approach was within 5% of
the reported areas for wheat, and within 3% for soy-
bean (Table 3). Larger errors were observed for maize
(∼50%), due to the fact that image acquisition (Octo-
ber 12 for both the years) was much earlier than the
peak of the maize growth cycle, so that many maize
fields did not appear green in the image (seeTable 1).
While these errors would be improved with more fre-
quent observations, the low errors for wheat and soy-
bean were deemed highly useful since these were the
two dominant crops in the region.

The spatial distribution of crop rotations inferred for
1993–1994 is shown inFig. 5. The dominant rotation
throughout the valley was wheat–soybean, with ap-
proximately 78,000 ha attributed to this rotation. The
spatially explicit information inFig. 5 was not avail-
able from field data, preventing any direct comparison
but highlighting the unique capabilities of remote sens-
ing. Crop rotations inFig. 5 provide valuable infor-
mation for land-use assessments and modeling efforts.
For example, different crop types can be associated
with different tillage, fertilizer and irrigation practices,

providing spatial constraints on management practices
that are needed in biogeochemical models (e.g.,Parton
et al., 1994).

3.3. Yield and planting date estimates

The results of the Monte Carlo analysis revealed
several interesting properties of the yield estimates
(Table 4). First, yield assessments were primarily sen-
sitive to the method used to compute fAPAR, with
a difference of∼20% between those based on SR
and NDVI. The most accurate estimates resulted from
fAPAR−(SR−NDVI), supporting the combined use
of SR and NDVI for fAPAR measurements (Los et al.,
2000). Assumptions about the onset of senescence had
a smaller effect on yield, with changes of only∼5%
between estimates using 1 and 3 weeks of senescence.
In addition, yield predictions were rather insensitive
to image and pixel level perturbations to fAPAR and
changes inε × HI, with σ only ∼5% of the mean.

Mean yield estimates using fAPAR−(SR−NDVI)
agreed well with reported values, differing by only
3.3% for 1993–1994 and−0.3% for 1999–2000, as-
suming 1 week of senescence. Moreover, the distribu-
tions of yield within Yaqui Valley were consistent with
field observations, which generally exhibited mini-
mum and maximum yields around 4.0 and 7.5 t ha−1,
respectively (Fig. 6). The distributions also revealed
interesting differences between the two growing sea-
sons that could not be obtained from total harvest data.

Fig. 7 shows the frequency histograms for yield
and month of planting date for the Monte Carlo
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Fig. 4. (A) February 26, 2000 SR image for a representative subset of Yaqui Valley, showing the distinction between cropped and bare
fields. The image is scaled from SR= 0 (black) to 4 (white), with gray fields comprised of wheat in early stages of development.
(B) Histogram of image in (A), demonstrating bimodal distribution of SR. Dashed line at SR= 2 shows threshold used to identify active
crops.
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Table 3
Comparison of crop areas estimated from Landsat data with harvested areas reported by the Yaqui Valley agricultural district

Crop Growing Season Reported area (ha) Estimated area (ha) Difference (%)

Maize 1993–1994 58377 34117 42
Wheat 1993–1994 152751 157939 3
Soybean 1993–1994 120127 124091 3
Maize 1999–2000 4414 1516 66
Wheat 1999–2000 191281 182247 5

Fig. 5. Crop rotations for 1993–1994 in Yaqui Valley agricultural district inferred from multi-temporal Landsat data and crop phenologies.
White areas, such as the large canal through the center of the valley and the urban area (Ciudad Obregon) in the northeast, indicate where
no crops were detected.
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Table 4
Means and standard deviations (parentheses) of yield estimates (metric tons) from Monte Carlo analysis, for three fAPAR methods and
three dates of senescencea

Growing season Weeks senesced Reported fAPAR−SR fAPAR−NDVI fAPAR−(SR−NDVI)b

1993–1994 1 823399 758965 (26117)c 943298 (28658) 850217 (30772)
2 823399 798049 (32182) 987438 (25860) 882930 (33711)
3 823399 828624 (34564) 1019619 (23868) 911537 (38616)

1999–2000 1 1082542 977704 (44511) 1195076 (47437) 1079190 (41316)
2 1082542 994700 (39268) 1242416 (37955) 1107893 (49720)
3 1082542 1010330 (44026) 1267287 (40437) 1124336 (47520)

a Reported values from agricultural district data are shown for comparison. All yield estimates were divided by 0.88 for comparison
with reported grain yields, which are at 12% moisture.

b Average fAPAR from SR and NDVI.
c Value in parenthesis is 1 standard deviation.

analysis using the fAPAR−(SR−NDVI) relationship
and assuming 1 week of senescence. Reported yield
and planting months, shown by the dark vertical lines,

Fig. 6. Histograms of (A) 1993–1994 and (B) 1999–2000 mean
wheat yield estimates for Yaqui Valley, assuming 1 week of senes-
cence and using fAPAR−(SR−NDVI).

were all within the range estimated by the Monte
Carlo analysis. However, while the uncertainty in
yield estimates were fairly low (σ ∼ 5% of mean),
planting months could not be predicted with high
confidence (σ up to 50% of mean; seeTable 5).
Moreover, both the assumed length of senescence and
the fAPAR method had relatively strong effects on
predicted planting months (Table 5).

The low confidence in planting date estimates
would almost certainly be improved with more ob-
servations during the initial stages of development
(Moulin et al., 1998; Guérif and Duke, 2000). While
high frequency observations are generally not avail-
able from Landsat and other high spatial resolution
sensors, global sensors such as the AVHRR offer
more frequent observations at low spatial resolutions
(>1 km). Using information from Landsat about the
spatial extent of crops within AVHRR pixels, it is
therefore feasible to improve estimates of crop phe-
nology with course resolution sensors (e.g.,Fisher,
1994). However, the results here emphasize that mod-
eled uncertainty in crop phenology does not have a
large effect on yield estimates. Therefore, a relevant
question is not only how well can we estimate plant-
ing dates but also how poorly can we assume planting
dates and still have confidence in yields?

3.4. Single image yield estimates

Yield estimates from the simple model with fixed
planting dates are shown inFig. 8. Of particular in-
terest here is the potential accuracy of yield predic-
tions assuming that all fields were planted on a single
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Fig. 7. Histograms of 1999–2000 yield and planting months calculated in Monte Carlo analysis(n = 100), assuming 1 week of senescence
and using fAPAR−(SR−NDVI). Solid vertical lines indicate reported values from district data.

date. Again, assessments using SR and NDVI under-
and overestimated actual yields, respectively, in both
the years of data by∼10%, while an average fAPAR
from SR and NDVI resulted in more accurate yields.
In 1999–2000, estimates were not very sensitive to
the assumed planting date over a reasonable range of

Table 5
Means and standard deviations of 1999–2000 planting date month estimates from Monte Carlo analysisa

fAPAR method/weeks senesced Hectares planted in November Hectares planted in December Hectares planted in January

Reported 21572 133270 31609
SR/1 24240 (5652)b 114430 (8069) 33461 (6603)
SR/2 27496 (7704) 109382 (10478) 35541 (6487)
SR/3 35958 (9835) 107318 (11688) 34478 (7462)
NDVI/1 22186 (5096) 135264 (6718) 15992 (4376)
NDVI/2 31222 (6581) 132690 (6870) 16182 (4398)
NDVI/3 34863 (5665) 130684 (7862) 16434 (4706)
SR−NDVI/1 23073 (5741) 126117 (8139) 23795 (4503)
SR−NDVI/2 29589 (6292) 122737 (7892) 24889 (5169)
SR−NDVI/3 34940 (6744) 117734 (8093) 26108 (5467)

a Reported values from agricultural district data are shown for comparison.
b Value in parenthesis is 1 standard deviation.

dates (e.g., December 1–January 1). For example, the
average planting date appears to be around December
10, but assuming a date of December 20 would result
in only ∼3% error.

In contrast, yield estimates for 1993–1994 were
much more sensitive to planting date, with a 10-day
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Fig. 8. (A) 1993–1994 yield estimates (average t ha−1) for a range of assumed planting dates, using an image acquired on February 1,
1994. Lower, middle and upper lines correspond to estimates using fAPAR−SR, fAPAR−(SR−NDVI) and fAPAR−NDVI, respectively.
Horizontal dashed line indicates reported mean yield from district data. (B) Same as in (A) but for 1999–2000, using an image acquired
on February 26, 2000.

error in assumed planting date resulting in∼27%
error in yield. The differences between the 2 years
are explained by the dates on which in the images
were acquired. February 1 is still before the peak
in fAPAR for most planting dates (e.g., February 1
is 58 days after emergence inFig. 3), while most
wheat canopies are fully developed by February 26.
Therefore, wheat planted 10 days apart will look more

similar on February 26 than February 1, causing er-
rors in the assumed planting date to have less im-
pact for the later image. These results suggest that
yield can be accurately estimated with a single image
and a reasonable assumption for planting date, pro-
vided that the image is acquired towards the middle
of the growing season when most canopies are fully
developed.
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3.5. Other potential sources of error

While this study considered several potential
sources of error, namely variability inε and HI and er-
rors in fAPAR measurements, several others remained
unmodeled due to a lack of sufficient field data. For
example, bias in the estimates ofε and HI could re-
sult from interannual changes in practices, cultivars
or environmental conditions (e.g.,Choudhury, 2000).
In fact, field records indicate the harvest indices
were slightly lower in 1999–2000 than in 1994–1995
(Ortiz-Monasterio, unpublished data), which interest-
ingly explains the slight overestimates of yield for the
1999–2000 data (Table 3). In addition, changes in the
timing of canopy development, for instance due to a
shift from bread wheat to durum wheat, could impact
yield and planting month estimates. However, the
accurate yield estimates calculated here suggest that
any unmodeled sources of error were relatively minor
and should not hinder future predictions of yield in
this area.

The utility of the approach presented here in other
agricultural regions will depend on additional uncer-
tainties. Most notably, widespread irrigation in the
Yaqui Valley prevented significant water stress, which
can have a substantial effect onε (Steinmetz et al.,
1990; Sinclair and Muchow, 1999) and would require
explicit consideration through soil moisture models or
thermal remote sensing (Guérif et al., 1993). The ab-
sence of serious crop diseases, weeds or pest infes-
tations was also a simplifying factor in Yaqui Valley,
and such factors may need to be considered to the
extent that their effects are not captured in variations
in fAPAR. Another important issue for any approach
based on satellite reflectance measurements is persis-
tent cloud cover during the growing season, such as
those occurring throughout much of the tropics. While
cloud cover was not a problem in this study, the mod-
eling framework developed here is capable of incor-
porating images from any point in the growing season
and provides an estimate of uncertainty that depends,
among other things, on the timing of images relative to
the crop growth cycle. Overall, the generality and rel-
ative simplicity of this modeling approach should fa-
cilitate applications to other crops and regions, where
additional sources of uncertainty should be carefully
considered and quantified in order to determine the
full potential of remotely sensed yield estimates.

4. Conclusions

The accuracy and low uncertainty of yield esti-
mates in this study strongly support the use ofEq. (1)
for regional yield studies. In addition, our results indi-
cate that accurate yield predictions are possible using
only one image, provided that it is acquired near the
peak of development for most fields. The incorpora-
tion of fAPAR from scaled vegetation indices in this
study offers a distinct advantage over yield models
that require estimates of leaf area index, since the
latter approach relies on often difficult and inaccurate
atmospheric corrections (e.g.,Bouman, 1992; Clevers
and van Leeuwen, 1996; Bach, 1998).

The spatial distributions of crop rotations and pro-
duction can be used for a variety of applications. Fu-
ture work will focus on incorporating NPP estimates
with a biogeochemical model to predict regional C
storage, and on using remotely sensed patterns of
yield to investigate sources of variability within and
between fields. However, one must be careful to con-
sider potential uncertainties in derived parameters, as
demonstrated by the low precision of planting date
estimates. Applications in new regions may need to
consider additional sources of uncertainty such as
water stress (Guérif et al., 1993), which was not a
factor in this well irrigated region.
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