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Abstract

Knowledge of the distribution of crop types is important for land management and trade decisions, and is needed to constrain remotely

sensed estimates of variables, such as crop stress and productivity. The Moderate Resolution Imaging Spectroradiometer (MODIS) offers a

unique combination of spectral, temporal, and spatial resolution compared to previous global sensors, making it a good candidate for large-

scale crop type mapping. However, because of subpixel heterogeneity, the application of traditional hard classification approaches to MODIS

data may result in significant errors in crop area estimation. We developed and tested a linear unmixing approach with MODIS that estimates

subpixel fractions of crop area based on the temporal signature of reflectance throughout the growing season. In this method, termed

probabilistic temporal unmixing (PTU), endmember sets were constructed using Landsat data to identify pure pixels, and uncertainty

resulting from endmember variability was quantified using Monte Carlo simulation. This approach was evaluated using Landsat classification

maps in two intensive agricultural regions, the Yaqui Valley (YV) of Mexico and the Southern Great Plains (SGP). Performance of the

mixture model varied depending on the scale of comparison, with R2 ranging from roughly 50% for estimating crop area within individual

pixels to greater than 80% for crop cover within areas over 10 km2. The results of this study demonstrate the importance of subpixel

heterogeneity in cropland systems, and the potential of temporal unmixing to provide accurate and rapid assessments of land cover

distributions using coarse resolution sensors, such as MODIS.
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1. Introduction

Remote sensing of the extent and distribution of

individual crop types has proven useful to a wide range of

end-users, including governments, farmers, and scientists

(Allen et al., 2002). Maps of cropland distributions are

usually generated by supervised classification of multiple

Landsat images throughout the growing season. These

approaches require amounts of manual interpretation and

cloud-free high spatial resolution imagery that are prohib-

itive for operational implementation over large areas and in

multiple years.
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The NASA Moderate Resolution Imaging Spectroradi-

ometer (MODIS) instrument provides a unique opportunity

for monitoring agricultural systems (Justice et al., 1998;

Townshend & Justice, 2002). Several attributes of MODIS,

including the daily global coverage, moderate spatial

resolution (0.25 to 1 km), rapid availability of various

products, and cost-free status may allow for operational

mapping of croplands. However, the large size of even the

250-m MODIS data relative to most fields results in MODIS

pixels containing mixtures of different fields, crop types,

and noncrop surfaces. As a result, approaches that assign a

single bhardQ classification to each pixel may be prone to

significant errors when mapping crop types (Defries et al.,

1995; Fisher, 1997; Wu et al., 2002). While the potential

errors associated with classification of mixed pixels are

widely recognized, the severity depends upon factors such

as landscape heterogeneity, sensor resolution, and the
ent 93 (2004) 412–422



D.B. Lobell, G.P. Asner / Remote Sensing of Environment 93 (2004) 412–422 413
intended scale of analysis (Moody & Woodcock, 1994). For

example, crop area estimates for large regions may be

improved relative to finer scales because random errors

incurred at finer scales will tend to cancel out.

The problem of the mixed pixel has been addressed in

numerous studies using linear unmixing (e.g., Adams et al.,

1986; Elmore et al., 2000; Smith et al., 1990). These

approaches model the reflectance of a pixel as a linear

combination of endmember reflectances, weighted by the

areal fraction of each endmember within the pixel:

q ¼
Xm
i¼1

Ciqi þ e ð1Þ

where q is the observed pixel reflectance, Ci and qi are

the fractional cover and reflectance, respectively, of the ith

endmember, and e is a residual representing model error.

To solve for the fractions of each of m endmembers

requires at least m equations, which are most commonly

generated by repeating Eq. (1) for different wavelengths, as

well as including an equation to constrain the sum of

endmember fractions to equal one. However, it is also valid

to use reflectance from different images through time,

provided that endmember fractions do not vary between

image dates (DeFries et al., 1999; Quarmby et al., 1992). In

this case, endmembers are defined in terms of temporal

signatures of reflectance instead of or in addition to spectral

signatures.

In this study, we investigated the impact of subpixel

mixing in MODIS data on crop classification, and devel-

oped a linear unmixing approach that captures, rather than

ignores, subpixel heterogeneity. There were three main

goals of this study: (1) quantify, using resampled Landsat

classification images, the potential errors resulting from

classification of 250 m and 1 km MODIS data; (2) develop a

linear unmixing model that estimates the subpixel fraction

of individual crop types using time series of MODIS data;

and (3) evaluate estimates of crop cover from MODIS

unmixing applied to two agricultural regions, using Landsat

estimates of crop area as a proxy for true area at a range of

spatial scales.
2. Methods

2.1. Site descriptions

This study focused on two agricultural regions where

Landsat-derived maps of major crop types were avail-

able: the Yaqui Valley (YV) in Northwest Mexico and

the Southern Great Plains (SGP) in the United States.

The YV comprises roughly 225,000 ha of irrigated

cropland situated between the Gulf of California and

Sierra Madre Mountains (27.58N, 109.58W). The major-

ity of fields are planted with spring wheat in November–

December and harvested in the following April–May.
Maize is the main secondary crop, averaging 10% of

planted area, and is typically sown in September and

harvested in March.

The SGP (36.58N, 97.58W) is dominated by rain-fed

winter wheat, which is planted in the fall and harvested

mainly in June (National Agriculture Statistics Service,

1997). Wheat accounts for roughly 80% of cropped area in

the region (National Agriculture Statistics Service, 2002),

with secondary crops including maize, sorghum, soybean,

and alfalfa, all of which are planted in spring and harvested

in fall.

2.2. Landsat crop classification

Landsat data acquired on January 14 and March 3, 2002

were used to map wheat in YV for the 2001–2002 growing

season. The images were corrected to top-of-atmosphere

(TOA) reflectance and transformed to the simple ratio

(SR=band 4/band 3), which exhibited a bimodal distribution

that easily distinguished cropped from uncropped lands

(Lobell et al., 2003). Pixels that contained an active crop in

both January and March were classified as wheat, with a

total regional wheat area estimate of 176,517 ha. This value

is 5.3% lower than the reported area of 186,324 ha

(Secretarı́a de Agricultura, 2003).

In SGP, a Landsat TOA reflectance image from April 4,

2000 was transformed to the SR, and all pixels in the

upper part of the bimodal distribution were identified as

wheat, the only major land cover that is green at this time

of year. The Landsat scene covered only a subset of the

SGP region. We thus focused exclusively on Garfield

County, OK, which was one of few counties fully

contained within the Landsat image and is representative

of the SGP region. The Landsat estimate of total wheat

area in Garfield was 133,869 ha, which is 2.7% lower than

the reported area of 137,652 ha (National Agriculture

Statistics Service, 2002).

Although the Landsat-based maps of wheat cover were

not extensively validated, close agreement with reported

regional totals and the well-known ability of Landsat to map

crop types allowed us to assign these wheat maps as

bground truthQ for subsequent evaluation of MODIS. Due to

limited availability of validated Landsat data coinciding

with MODIS collects, our analysis was limited to the 2001–

2002 growing season in YV and 2000 in SGP, and in both

cases to the major crop (wheat). These data sets provided a

means to assess MODIS estimates of crop area at a range of

spatial scales.

2.3. Analyses of sensor resolution and scale

One way to evaluate potential classification errors

associated with course resolution data is to simulate such

data using resampled Landsat imagery (e.g., He et al.,

2002; Moody & Woodcock, 1994). We resampled the

Landsat wheat maps to 250 m and 1 km resolution, with
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the values in the resulting image expressing the subpixel

proportion of wheat. These resampled images were then

classified according to a simple majority rule, with all

pixels containing 50% or more wheat classified as bwheatQ,
and those with less than 50% classified as bnot wheatQ (see
Fig. 1).

To evaluate the impacts of this classification, we

considered a range of spatial scales, from a single pixel

(e.g., 250�250 m) to the entire region. Here, we use scale

to refer to the ground area (i.e., extent) over which crop

area is computed. At each spatial scale, the total area of

wheat was calculated for both the classified course

resolution image and the original Landsat image, represent-

ing the true area. For example, at a scale of 10�10 pixels

(equal to 625 ha for the 250-m data), the region was divided

into 10�10 pixel square subregions, and the total area was

computed for each subregion. We then computed the root
Fig. 1. Overview of procedure used to evaluate the effect of pixel size on classifica

this case, for wheat in YV, was resampled to 250 m and 1 km resolution. These ima

The total area of wheat was then computed for multiple nonintersecting subregi

illustrated here by the square in the southeast corner.
mean square error (RMSE) and bias of the area estimates,

defined as:

RMSE sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

âai � aið Þ2=n
s

ð2Þ

bias sð Þ ¼
Xn
i¼1

âai � aið Þ=n ð3Þ

where s is the spatial scale (ground area), n is the number of

subregions of size s, and âi and ai are the estimated and

true crop area in the ith subregion, respectively. The RMSE

is a combined measure of the bias and variance associated

with an estimator. To isolate the variance, we also computed

the coefficient of determination (R2) between the estimated

and true area, reflecting the ability of the classification to
tion-based crop area estimates. A Landsat classification-based crop map, in

ges were then classified based on a simple threshold criterion (wheatN50%).

ons, where the size of the subregion was defined by the scale of interest,
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capture spatial patterns of crop area at the given spatial

scale:

R2 ¼ cov a; âað Þ2

var að Þvar âað Þ ð4Þ

where cov(a,â ) is the covariance between true and

estimated crop area, and var(a) and var(â) are the variances

of true and estimated area, respectively.

2.4. MODIS data

MODIS 16-day 250-m vegetation index (VI) composite

products were obtained for both study regions for the period

2000–2002. These collection 4 products include constrained

view angle–maximum value composites (CV–MVC) of the

normalized difference VI (NDVI) and enhanced VI (EVI),

as well as the corresponding red and near-infrared (NIR)

reflectance (MODIS bands 1 and 2) and quality assessment

(QA) flags (Huete et al., 2002). For this study, we used only

the red and NIR values from the composite, along with the

VI Usefulness Index in the QA data set. Reflectance values

for dates with a VI Usefulness Index value lower than bgood
qualityQ were replaced by linearly interpolated values from

the two closest dates with good, high, or perfect quality.

2.5. Probabilistic temporal unmixing

2.5.1. Temporal unmixing

The time series of MODIS reflectance were used to

estimate cropland cover in each region by solving the set of

linear unmixing equations, written in matrix form as:

v11 : : : v1m
v : : : v
vn1 : : : vnm
1 : : : 1

1
CCA

C1

v
Cm

0
@

1
A ¼

v1
v
vn
1

1
CCA

0
BB@

0
BB@ ð5Þ

where m is the number of endmembers, n is the number of

observations (number of wavelengths�number of dates), vij
is the jth value for the ith endmember, Ci is the fractional

cover of the ith endmember, and vj is the value of the jth

observation. Eq. (5) represents a set of n+1 individual

equations, with one for each wavelength at each time step,

and an additional equation constraining the sum of fractions

to one.

The success of all unmixing approaches relies on the

selection of appropriate endmembers. Insufficient contrast

between endmembers often leads to an unstable solution,

resulting in noisy and inaccurate fraction images. However,

too few endmembers will fail to correctly model the pixel

reflectance, leading to large errors. Several approaches have

been adopted to address these issues. Roberts et al. (1998)

applied hundreds of different models to each pixel, with

each model containing two to three endmembers selected

from a spectral database, and then selected the single model

for each pixel with the lowest RMSE. This approach
focused on small differences between candidate endmember

spectra to adjust the model on a per-pixel basis, and relied

on the RMS as an appropriate measure of model error.

Asner and Lobell (2000) used linear combinations of

reflectance to reduce differences between similar endmem-

bers (e.g., all green vegetation). We found that a single

model using just three endmembers (green vegetation,

nonphotosynthetic vegetation, and soil) was able to accu-

rately estimate fractions across multiple images due to the

reduced endmember variability.

In the context of temporal unmixing of 250 m MODIS

data, it is possible to define endmembers in terms of only

red reflectance (Red), near-infrared reflectance (NIR), both

Red and NIR, or an arbitrary linear combination of the two.

An example of the latter is the simple perpendicular

vegetation index (PVI; Richardson & Wiegand, 1977):

PVI ¼ NIR� Red ð6Þ

Nonlinear indices, such as NDVI or EVI, cannot be used

because they fail to preserve the linear relation between

endmembers and observations. For example, consider a

pixel with two endmembers of fractional cover a and b. The

observed PVI will equal the appropriate sum of endmember

PVI, unlike for NDVI:

PVI ¼ NIR�Red ¼ ðaNIR1 þ bNIR2Þ � ðaRed1 þ bRed2Þ
¼ aðNIR1 � Red1Þ þ bðNIR2 � Red2Þ
¼ aPVI1 þ bPVI2 ð7Þ

NDVI ¼ NIR� Red

NIRþ Red

¼ ðaNIR1 þ bNIR2Þ � ðaRed1 þ bRed2Þ
ðaNIR1 þ bNIR2Þ þ ðaRed1 þ bRed2Þ

p aNDVI1 þ bNDVI2 ð8Þ

To determine the optimal definition of endmembers, we

performed the unmixing using Red only, NIR only, Red and

NIR, and PVI.

2.5.2. Probabilistic unmixing

In addition to the assumption of linear mixing, Eq. (2)

assumes that endmember spectra (here, we use bspectraQ to
refer to reflectance across multiple wavelengths and/or

dates) are known exactly for each pixel. In reality,

reflectance is likely to vary across space and time, even

for a narrowly defined endmember. For example, a spectrum

of a wheat canopy does not appear identical for all locations

and years, but varies according to range of environmental

and management factors, such as temperature and planting

date. Rather than define endmembers with a single

spectrum, as in most approaches, we therefore prefer to

define endmembers as a set of spectra which represent the

full range of potential variability (Asner & Lobell, 2000;

Bateson et al., 2000). The uncertainty in endmember

fractions arising from endmember variability can then be
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quantified using Monte Carlo sampling techniques (that is, a

spectrum is randomly selected from each endmember set,

fractions are estimated, and this is repeated a large number

of times to derive a distribution of fractions for each

endmember). Thus, endmember fractions are not estimated

as single values, but rather as a probability distribution that

can be used to construct confidence intervals appropriate to

the desired application.

2.5.3. Endmember selection

Endmember sets were constructed by collecting spectra

from pixels judged to consist entirely of a single cover type.

Landsat ETM+ data was used for each region to aid in

identification of large fields. The temporal domain of the

endmembers was defined in each region to span the growing

season of the dominant crops, without being so long as to

allow multiple crops over time. In YV, the endmembers

were the two major crops, wheat and maize, and uncropped
Fig. 2. Time series of red, NIR, and PVI for YVendmembers. Only 20 spectra are

while maize peaks in December.
land (including bare soil and urban areas; Fig. 2). The

number of spectra used to define the three endmembers was

52, 28, and 46, respectively, with the lower number for

maize reflecting the difficulty of finding large maize fields.

Endmember spectra spanned from day of year (DOY) 241

(Aug. 29), when fall maize planting begins, through DOY

113 (Apr. 23), when wheat harvest is active. Images after

late April were not included because cotton, which is

commonly planted on fields after maize harvest, begins to

develop in April. Defining endmembers across a longer time

period would therefore violate the assumption that end-

member fractions do not change through time. In practice, it

is possible, although not demonstrated here, to separately

unmix different times of the year to capture distributions of

crops with different growing seasons.

The endmembers for SGP (number of spectra in each

endmember set is shown in parentheses) were wheat (22),

pasture (24), and summer crops (42), which includes
shown in each panel for clarity. Wheat reaches peak growth in early March,
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sorghum, corn, and soybean (Fig. 3). Endmembers spanned

from DOY 49 (Feb. 18), before peak wheat growth, to DOY

305 (Nov. 1), which is after harvest of summer crops. The

three summer crops were difficult to distinguish visually,

based on phenology due to similar planting and harvest

dates (National Agriculture Statistics Service, 1997), and

were therefore combined into one endmember set. Potential

methods to separate crops with similar phonologies are

discussed in the Results and discussion section.

2.5.4. Summary

The entire procedure described above is illustrated in

Fig. 4, and referred to hereafter as probabilistic temporal

unmixing (PTU) for brevity. First, time series of red and

NIR reflectance were constructed based on the MODIS

NDVI composite products. Sets of image endmembers were

then defined from the reflectance time series; in this case,

using Landsat classification data to guide the endmember
Fig. 3. Time series of red, NIR, and PVI for SGP endmembers. Only 20 spectra ar

while summer crops and pasture peak in mid- and late summer, respectively.
selection process. We note that endmembers may also be

derived from alternative sources, such as combining models

of crop growth and radiative transfer to simulate reflectance

changes through the growing season. Once endmember sets

were defined, each pixel was unmixed repeatedly (i.e., 50

times) with randomly selected endmembers from each set to

produce a distribution of fractions. Below, we discuss the

results of the PTU model applied to YV in 2001–2002 and

SGP in 2000. Subscripts are used hereafter to denote the

wavelength combinations used in endmember definition

(i.e., PTUR, PTUN, PTURN, and PTUPVI for Red only, NIR

only, Red and NIR, and PVI, respectively).

2.6. Model evaluation

Wheat area estimates from PTU were evaluated by

comparison with the total area of Landsat pixels classified as

wheat within the corresponding MODIS pixel(s). As with
e shown in each panel for clarity. Wheat reaches peak growth in early April,



Fig. 4. Outline of probabilistic temporal unmixing (PTU) algorithm. The

steps within the gray box, namely, the selection of an endmember from each

set and the calculation of endmember fractions, are repeated many (50)

times to derive distributions of endmember fractions that reflect the

uncertainty associated with endmember variability.

Fig. 5. Root mean square error of crop area at different spatial scales for

classification of Landsat-based wheat maps resampled to 250 m and 1 km

resolution.
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the evaluation of Landsat resampling above, model assess-

ment was performed at scales ranging from individual pixels

to over 20 km2, and was based on RMSE, bias, and R2

statistics.
Table 1

Patch area and edge density metrics for Landsat wheat classification images

Site Mean patch

size (ha)

Standard

deviation of

patch size (ha)

Edge density

(m�1�10,000)

Yaqui Valley 21.6 294.4 19.64

Garfield, OK 17.3 245.7 45.77
3. Results and discussion

3.1. Resampled Landsat classification

Fig. 5 summarizes the errors in estimating wheat area

using Landsat classification images resampled to 250 m or 1

km resolution. Not surprisingly, the hard classification

resulted in significant errors when estimating percent cover

for individual pixels, since the estimate is constrained to two

values (0 or 100). As the scale over which computed crop

area increased, the errors associated with classification

decreased. This reflects the fact that errors for individual

pixels partially cancel out when summing over many pixels.

However, at 250 m resolution, the RMSE fell below 5%

only when computing crop area over a ground area of 300

ha (roughly fifty 250-m pixels).

The RMSE for 1 km resolution was significantly higher

than 250 m over small areas, owing to greater mixing of

cover types compared to 250 m. Errors for 1 km resolution

remained higher even when summing over large areas (N30

km2), the result of a significant positive bias associated with

the classification estimates. This finding concurs with
previous studies, which concluded that classification tends

to overestimate the most common cover types, such as

wheat in these regions (He et al., 2002; Moody &

Woodcock, 1995).

The results of the Landsat resampling analysis illustrate

several important points. First, classification of mixed

pixels can lead to significant errors when estimating crop

area. Second, the magnitudes of these errors depend largely

on the scale of analysis. For example, a study focused on

total regional area may come to very different conclusions

than one focused on subregional spatial patterns of land

cover. Third, errors also depend on pixel resolution, with

larger pixels prone to greater classification errors. In this

case, for estimates of crop area over 20 km2, the RMSE for

1-km pixels were roughly twice as large as those for 250-m

pixels.

Finally, the impact of classification will depend on

landscape properties, such as mean patch size and propor-

tion of each cover type (Moody & Woodcock, 1995; Wu et

al., 2002). Table 1 gives the mean and variability of patch

size for wheat in the two regions, along with edge density as

computed using the FRAGSTATS software (McGarigal and

Marks, 1995). While the two regions in this study

demonstrated similar errors from classification, it is

interesting to note that SGP exhibited larger errors at fine

scales, which likely reflects the greater edge density.

Overall, resampling Landsat data provides a simple and

convenient way to assess the likely errors associated with

classification of coarser resolution imagery in a particular

landscape.



Table 2

Average standard deviation of wheat fractions from PTU for different

endmember combinations

Site Red only NIR only Red and NIR PVI

Yaqui Valley 0.13 0.09 0.08 0.07

Garfield, OK 0.12 0.10 0.08 0.08
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3.2. Probabilistic temporal unmixing

Application of PTU using different combinations of

wavelengths indicated that standard deviations of wheat

fractions were generally greater than 10% when using only

red or NIR (Table 2). This modeled uncertainty was reduced

when using both wavelengths, either as in PTURN or

PTUPVI, with the lowest uncertainty in both regions

achieved when using PVI (Table 2). The slightly lower

standard deviation for PTUPVI relative to PTURN reflects the

reduced variability in endmembers when defined in terms of

PVI.

Fig. 6 shows the mean and standard deviation images of

wheat fractions from PTUPVI for both regions. The MODIS-

based wheat images were compared to the Landsat bground
truthQ maps at a range of spatial scales for YV (Fig. 7) and

SGP (Fig. 8). In these figures, the RMSE, bias, and R2 are

shown for PTU outputs using each wavelength combination.

Results were generally consistent across the two regions,

with RMSE decreasing from roughly 25–30% when

evaluated at the scale of individual pixels to roughly 10–

15% at scales above 10 km2. Fractions from PTUPVI and

PTURN were always among the lowest RMSE and highest
Fig. 6. Mean (top) and standard deviation (bottom) images of wheat
R2, with PTUR and PTUN performing substantially worse in

some cases. This is consistent with the observation above

that PTUPVI and PTURN demonstrated the least modeled

uncertainty, in terms of standard deviation of fractions.

For individual pixels, the best PTU results (using PVI)

were able to explain roughly 50% of variance in actual

wheat area. This value reflects a level of uncertainty

significantly higher than modeled based on endmember

variability, and suggests that factors beyond endmember

variability contribute to estimation error. One such factor

may be geolocation errors in the MODIS preprocessing

algorithms, which have been improved significantly in

collection 4 but remain evident.

At scales greater than 10 km2, PTU generally estimated

true wheat area to within 20%, with much of that error

attributable to bias. Over 80% of spatial variability in wheat

area was captured by PTU at these coarser scales in YV,

with that value rising to over 90% in SGP. Thus, linear

unmixing appears very capable of quantifying coarse scale

variations in crop area for the landscapes tested in this study.

3.3. Toward operational application

While this study introduced a technique for mapping

cropland distributions with MODIS, several problems must

be addressed if it is to be used on an operational basis. In

particular, we note three main barriers to applying temporal

unmixing across multiple sites and years. First, the impact

of temporal variability in endmember spectra will need to be

evaluated in addition to the effects of spatial variability
fractions from PTU, for YV (left side) and SGP (right side).



Fig. 7. Root mean square error (top), bias (middle), and R2 (bottom) for

MODIS estimates of wheat area in YV at different spatial scales.

Fig. 8. Root mean square error (top), bias (middle), and R2 (bottom) for

MODIS estimates of wheat area in SGP at different spatial scales.
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investigated here. For example, if endmembers are defined

across multiple years, will interannual differences in crop

growth result in temporal signatures that are so variable as to

increase fraction uncertainties to an unacceptable level?

Preliminary work on this topic suggests that the answer will

vary significantly according to climatic variability, manage-

ment regime (e.g., irrigated vs. rain-fed), and crop type. In

cases where temporal variability results in large uncertain-

ties, it may be necessary to derive endmember spectra for

each individual year, possibly with automated search

procedures (Settle & Drake, 1993).

A second important issue will be that in some cases,

different crops may be too similar to separate reliably with

linear unmixing. This is exemplified by the case of summer

crops in SGP, which were not distinguishable in our study.

Similarly, in some years in YV, large areas are planted to

safflower, which has a similar phenology to wheat. It may

be that, in these cases, approaches such as decision trees that

can utilize nonlinear transformations of the data may be
more appropriate than linear unmixing. Another option is to

employ multiple mixture models with different combina-

tions of endmembers, and to use model selection criteria,

such as RMSE, to identify the appropriate subset of

endmembers on a per-pixel basis (Roberts et al., 1998).

Preliminary work (not shown) suggests that this approach

allows separation of wheat and safflower in the YV.

Third, we note that even a small average bias of

unmixing results on a per-pixel basis can result in large

errors when computing total regional crop cover. Specifi-

cally, the total regional bias will be the average bias

multiplied by the total number of pixels, while the true

crop area may be small relative to this value. A potential

solution to this problem is to only compute the area of pixels

above a specified threshold of percent cover for the given

crop, which will effectively ignore all pixels with zero

cover. An important consideration here will be to choose an

appropriate threshold, and to determine the variability of

this threshold between different crops, regions, and years.
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4. Conclusions

We have presented a probabilistic linear unmixing

approach that employs time series of MODIS data to

estimate subpixel fractions of land cover types along with

their uncertainties. While this approach is applicable in any

ecosystem, it is perhaps most relevant in systems, such as

croplands, where subpixel heterogeneity is significant. In

the agricultural landscapes of Northwest Mexico and the

Southern Great Plains, results from the unmixing approach

(PTU) were assessed at a range of spatial scales, with R2

ranging from roughly 50% for individual pixels to greater

than 80% for ground extents over 10 km2.

The success of any technique, such as PTU, will vary

based on sensors and landscape characteristics, as well as

the extent of training (in this case, the specification of

endmember sets). Comparison with other techniques, such

as regression tree modeling and nonlinear mixture models,

and additional regions are therefore needed to further test

the utility of PTU. Importantly, the success of a technique

also depends on the scale and required accuracies of the

intended application. The significant change in accuracy

with scale in this study demonstrates the need to evaluate

model estimates at a range of spatial scales. This places a

premium on extensive validation sets, such as those derived

from higher resolution Landsat data.

Finally, we note that even with subpixel unmixing

methods, MODIS data were able to capture only half of

the variability expressed in Landsat data at the scale of

individual fields (~10 ha). While MODIS offers great

promise for characterizing croplands at larger scales,

continued acquisition of Landsat resolution data is imper-

ative for the many agricultural applications that require

field-level observations.
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