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increase average regional crop yields in the face of diminished gains in genetic yield poten-

tial, likely climatic changes, decreased resource availability, and stricter environmental

standards. Fundamental to the pursuit of effective investment strategies is an ability to

quantify tradeoffs associated with potential policy and management changes. However,

the data needed to predict regional yield responses to change, namely observations of

yields and climatic, soil, and management conditions in farmers’ fields, are often difficult to

obtain. In this paper, we investigate the value of data on the spatial distribution of yields for

understanding causes of landscape yield variability. Stochastic simulation models, which

employ the CERES model to simulate crop yields across a landscape, are used to translate

assumed spatial patterns of soil and management conditions into spatial pattern of yields.

Monte Carlo simulation is then used to repeat this process for many different realizations

of conditions, resulting in a modeled relationship between yield patterns and the relative

importance of soil and management yield constraints, both of which can be computed in

the controlled simulation environment. The derived relationship then allows one to infer

from observed yield patterns the true proportion of yield variability explained by soil and

management.
This procedure was tested for wheat in the Yaqui Valley, an intensive agricultural region in
Sonora, Mexico, where yield patterns have been previously estimated with remote sensing.

Comparison of simulated and observed yield patterns indicated that roughly 80% of spa-

tial yield variance in 2001–2002 was attributable to management variations. The ability of

simulation models to aid interpretation of landscape patterns is potentially invaluable for

understanding yield constraints in many agricultural regions, where direct observations of

soil and management variables are infeasible.
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1. Introduction

Public investment in agricultural regions must consider trade-
offs between multiple policy objectives, such as increased
food production, improved environmental quality, decreased
resource use, and higher farmer income. Fundamental to the
pursuit of appropriate investment strategies is an ability to
quantify the impact of policy decisions on each objective of
interest. In this context, a key goal of agricultural research
and policy is to close the gap between potential and average
yields achieved in farmers’ fields. Closing this yield gap will
play an important role in increasing food production in the
face of diminished gains in genetic yield potential, possible
climatic changes, decreased resource availability, and stricter
environmental standards (Cassman et al., 2003).

Identification of strategies to reduce the yield gap requires
an understanding of its causes. This understanding may also
be useful in other contexts, such as in assessing regional land
quality and its change through time (Bindraban et al., 2000;
Dumanski and Pieri, 2000). Here, we define the yield gap as
the difference between attainable yield potential and aver-
age regional yields, where attainable yield is measured as
yield on the highest yielding farmers’ fields (Fig. 1). This def-
inition contrasts with some authors who use more standard
measures of yield potential, namely yields from experimental
stations or outputs of crop simulation models (Evans, 1993;

Yields achieved in a farmer’s field can be considered a func-
tion of environmental conditions:

y(u) = f [e(u)] (1)

where y(u) is the yield at location u, e(u) represents the condi-
tions experienced by the crop at location u, and f describes the
relationship between conditions and yield. Both u and e(u) can
be considered multivariate vectors, for instance, u may consist
of latitude and longtitude, and e(u) may describe the many soil,
climate, and management variables affecting crop growth.

To evaluate the impact on the yield gap of changes in envi-
ronmental conditions, such as those that might be achieved
through policy instruments, an understanding of what drives
variability in y(u) is needed. Typically, this means obtaining
observations of e(u) in farmers fields, which can then be com-
bined with pre-defined models of f (e.g., Aggarwal and Kalra,
1994; Singh et al., 1994; Matthews et al., 2002) or with statistical
models relying on joint observations of y(u) to determine the
contribution of different factors to yield variability (Calvino
and Sadras, 2002; Lobell et al., 2004).

While these studies have provided new insights into the
yield gap in specific regions, detailed understanding of the
causes and often even the magnitudes of yield gaps are poorly
known in many regions. This paucity of information reflects
the difficulty of acquiring extensive information on both yields
and environmental conditions in fields. For instance, informa-
Penning de Vries et al., 1997; Cassman, 1999), which will often
be larger than maximum economically viable yields. How-
ever, we utilize a definition based on farmers’ yields for three
main reasons. First, in some cases farmer yields may be more
readily available than experimental or modeled data. Sec-
ond, in intensively managed irrigated systems, the difference
between true yield potential and maximum achieved yields is
likely to be small. Third, in cases where the difference is sub-
stantial, the gap between average and maximum yields still
provides an important measure of the potential to improve
average yields under current technological and economic con-
ditions (Mosher, 1978).

Fig. 1 – Graphical representation of the spatial distribution
of crop yields in a region. Spatial variability may arise from
many factors, such as differences in land quality and
various management practices. The yield gap is defined
here as the difference between maximum and average
yields.
tion on the spatial heterogeneity of soil properties and man-
agement practices between fields are poorly known in most,
if not all, regions (Hansen and Jones, 2000).

Given the difficulty of measuring conditions on farmers’
fields, an approach to understanding the yield gap that uti-
lizes only readily available information would be of consider-
able value. For instance, data on crop yields and their spatial
locations are increasingly available through GIS technologies,
such as combine-mounted yield monitors and remote sensing
(e.g., Dobermann et al., 2003; Lobell et al., 2005). What can be
learned from this information alone? In this paper, we inves-
tigate the use of spatially referenced yield data to infer causes
of the yield gap, based on the concept that different potential
limiting factors can be associated with different spatial pat-
terns of variability.

The notion that yield patterns reflect causes of variability
is common in precision agriculture studies aimed at under-
standing within-field yield gradients (Lotz, 1997; Plant, 2001).
Underlying these studies are assumptions about the spatial
patterns of yield controls within fields (e.g., management prac-
tices are uniform along straight lines; Lotz, 1997), which are
often based on farmer experience and can be readily tested
with field measurements. At the landscape scale, knowledge
of the spatial structure of soil, climate, and management con-
ditions is currently more limited. However, many datasets that
exist for other purposes can potentially be used to analyze
spatial patterns (see example below), and the collection and
storage of georeferenced data is likely to become more afford-
able and common in the future.

There are many ways to quantitatively describe spatial pat-
terns (see, e.g., Cressie, 1991; Getis and Ord, 1992; Gustafson,
1998; Haining, 2003). Here, we adopt a geostatistical approach,
where the spatial distribution of a variable Z(u) is character-
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ized by its auto-covariance function C(h), which defines the
degree of association between two values separated by a vec-
tor h.

C(h) = Cov(u, u + h) = E[Z(u)Z(u + h)] − E[Z(u)]2 (2)

or, alternatively, by its semi-variance function �(h):

2�(h) = Var[Z(u + h) − Z(u)] = E[(Z(u + h) − Z(u))2] (3)

The spatial auto-covariance or semi-variance is a statis-
tical summary of the relationship between values of Z(u)
separated by h (for more discussion see, e.g., Deutsch and
Journel, 1992). Empirical determination of C(h) or �(h) requires
systematic sampling of the variable(s) of interest (i.e., e(u))
across the landscape. Unlike obtaining joint observations of
y(u) and e(u) within farmers fields, however, C(h) or �(h) can be
defined independently for each variable (provided that covari-
ance between the variables can be neglected). For example,
it is possible to use datasets collected using different sample
locations and at different times.

To summarize, information on the spatial pattern (e.g.,
�(h)) of both y(u) and e(u)) may be easy to obtain relative to
simultaneous measurement of yield and conditions at loca-
tions throughout a landscape. The challenge then becomes
using these spatial patterns alone to infer causes of the yield
g
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ment constraints at the regional scale. This approach was
tested in an agricultural region in Northwest Mexico, where
data on the spatial patterns of conditions and yields were
available.

2. Methods

The proposed methodology consists of using a landscape sim-
ulation model to train a simple regression (i.e., meta-model)
between yield patterns and the importance of different yield-
controlling factors. This regression can then used to quantify
factor importance based on observed yield patterns. The pro-
cedure entails five main steps, as illustrated in Fig. 2 and
outlined below.

(1) The first stage is to select a simulation model capable of
predicting yield under a specified set of conditions. This
model should include, as much as possible, all processes
operating in the landscape. In this case, we have chosen
the CERES-wheat crop model (Tsuji et al., 1994), which has
proven capable of simulating responses to climatic vari-
ations, and to a lesser degree water and nutrient stress
(Jones et al., 2003).

(2) The next step is to define the spatial structure of variabil-
ity (e.g., �(h)) for all conditions under consideration. The
choice of which conditions to consider will be dictated by
the required inputs for the crop yield model (defined in

F inter
t

ap. Similar attempts in ecological research to relate measur-
ble landscape patterns to underlying processes have bene-
ted from the use of stochastic simulation models, which can
uantitatively explore the sensitivity of landscape pattern to
arious factors (e.g., Gardner et al., 1987; Turner et al., 2001).
ffectively, such models relate underlying processes to result-
ng patterns, and thereby provide a way to test hypotheses
bout the causes of observed landscape patterns.

The goal of this study was to develop and test a modelling
ramework for combining information on patterns of y(u) and
(u) to identify the relative importance of soil and manage-

ig. 2 – Schematic representation of simulation approach to
ext.
step 1). In this process, one should also account for any
spatial covariance between input variables, as discussed
in the example below. The definition of variability can also
be extended in a straightforward way to include temporal
variation. While not done in the example below, this would
be useful for analyzing the complete spatio-temporal pat-
tern of yield variability.

(3) The third stage is a Monte Carlo simulation of landscape
yield patterns. The structures defined in step 2 are used
to randomly simulate spatial distributions of conditions,
for example through sequential Gaussian simulation with

preting yield patterns. Numbers indicate steps described in
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simple kriging (Deutsch and Journel, 1992). The yield
model is then applied at each point on the landscape,
resulting in an array of simulated yields (see Fig. 2).
Two independent analyses are then performed on these
arrays. First, the outputs are regressed against the known
inputs to determine the proportion of yield variability
explained by each input. In this case, we use simple linear
regression although non-linear techniques may also be
used. Second, the spatial pattern of yield is measured,
using one or many quantitative metrics of landscape
variability. The choice of a metrics is arbitrary, and could
incorporate several individual metrics. In this study, we
employ as a metric the ratio of �(h) for yield at 350 m and
2 km lag distance, which represents a measure of short
versus long-range variability (see below).
This sequential process of simulating inputs and then
outputs, and finally analyzing sources of variability and
yield patterns, is repeated a large number of times, in this
case 100, in order to quantify the sensitivity of the sim-
ulated pattern to the underlying processes. The result of
this Monte Carlo simulation is a value of percent variance
explained by (or relative importance of) each input for
each run, and an array of pattern metrics for each run.
This step involves explicit definition of the model spatial
scale, which includes both the grain (also commonly
called support or resolution) and extent. The grain should
be small enough that model inputs are relatively homo-

be smaller than individual field sizes, which are roughly
10 ha in the example. The extent of 9 km2 was selected
because it exceeds the maximum correlation length of soil
properties (see below), but was small enough to produce
substantial variations between simulations.

(4) The fourth step is to statistically compare the outputs of
the simulation experiment, specifically the importance of
each input and the yield pattern metrics. The ability of a
statistical model to relate the two quantifies the degree
to which the observable pattern metric(s) is sensitive
to (and therefore, can be used to predict) the desired
quantity. As mentioned in step 3, ensuring sufficient con-
trast between simulation runs is critical for training the
statistical model. This stage may also involve comparing
the predictive power of several candidate pattern metrics.

(5) Finally, the fifth step is to apply the selected metric(s) to
an actual dataset of spatial yield distributions. Such a
dataset may be available, for instance, through field sur-
veys or remote sensing analyses. The value of the derived
metric(s) can then be related to the relative importance
of underlying causes based on the simulation analysis in
the previous steps.

2.1. Data used in this study

The procedure outlined above was tested in the Yaqui Val-
ley (YV), an irrigated region comprising 225,000 ha along the

thw
geneous (Hansen and Jones, 2000), but cannot be so
small that simulating a proper extent is computationally
infeasible. The specification of model extent also involves
a tradeoff, in that it should be large enough to allow
significant variation of inputs within the landscape, but
small enough to ensure different degrees of variabil-
ity in different simulation runs. Essentially, we seek a
simulation extent such that some simulations have low
spatial variance in a given input and some simulations
have high spatial variance. In the example below, we
define the model grain as 1 ha (100 m × 100 m) and model
extent as 9 km2 (3 km × 3 km). The former was chosen to

Fig. 3 – Wheat yields in the Yaqui Valley study region of Nor
from Landsat data.
western coast of mainland Sonora, Mexico (27◦N 110◦W).
In YV, spring wheat is sown on average to ∼60% of the
irrigation district in November–December and harvested in
April–May. Previous work with Landsat satellite imagery has
furnished well-validated datasets on the spatial distributions
of wheat yields in this region (Lobell et al., 2003, 2005; see
Fig. 3). Specifically, a method that combines multiple Land-
sat images with a temperature-based model of crop growth
provides yield estimates at the 30 m × 30 m resolution of Land-
sat with root mean square errors of 0.5 t ha−1 (∼10%). For
this study, we used yield data from the 2001 to 2002 growing
season.

est Mexico for the 2001–2002 growing season, estimated
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In addition to the availability of yield estimates, the YV was
selected because previous and ongoing studies of the yield gap
provide an independent means of evaluating the performance
of the simulation approach. Specifically, water and nutrient
management practices in YV have been found to explain at
least 50% of the spatial yield variability (Lobell et al., 2005).
Remaining variability is likely due to additional management
practices, with at least ∼10% due to soil properties (Lobell et
al., 2002).

To characterize the spatial distribution of soil conditions,
measurements of soil texture at three depth intervals (0–30,
30–60, and 60–100 cm) were obtained from the National Water
Commision (CNA) for 2594 georeferenced points collected
throughout the valley over the past decade. Unfortunately, the
accuracy of this dataset was not well-documented and signifi-
cant errors may be present. For instance, clay values appeared
consistently lower than values measured in our previous work.
However, since we use this dataset mainly to specify the spa-
tial structure of soil variability, any systematic errors should
not greatly affect the analysis.

Since CERES requires soil inputs in terms of soil lower limit
(SLL), drained upper limit (DUL), and saturated upper limit
(SAT), the texture values were converted based on the follow-
ing pedo-transfer functions (Rawls et al., 1982):

SLL (%) = 2.6 + 0.5 × % clay + 1.58 × OM (4)

D
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texture, SLL, and DUL, which ranged from 24 to 49% clay,
10–30% silt, and 24–66% sand (Ortiz-Monasterio, unpublished
data). The root mean square error (rmse) and bias of predic-
tions were 4.06 and 3.36%, respectively, for SLL and 4.89 and
−0.61% for DUL. Thus, the equations were deemed appropri-
ate for the purposes of the simulation, namely to characterize
the spatial structure of soil water limits. While SAT was not
directly validated, repeated runs of CERES with different val-
ues of SAT revealed a negligible sensitivity of modeled yields
to percent saturation.

Data on management practices were taken from a survey of
74 wheat farmers conducted in 2002–2003 (Lobell et al., 2005).
While this survey measured numerous aspects of manage-
ment, for the purpose of the simulation we considered only the
following main variables: planting date, fertilizer rate, seed-
ing densities, number of irrigations, and timing of irrigations
(Table 1). All soil and management inputs required by CERES
other than those mentioned above were set to representa-
tive values and held constant for all simulations. Variability
of model outputs were therefore due entirely to variability
in the soil water limits and management practices discussed
above. Data on temperature, rainfall, and solar radiation were
obtained from a local meteorological station for the 2001–2002
growing season (http://www.pieaes.org.mx/datos.htm).

2.2. Spatial simulation of conditions

F paci
t gram
UL (%) = 25.76 + 0.36 × % clay − 0.20 × % sand + 2.99 × OM

(5)

AT (%) = 78.99 − 0.37 × % sand + 1.0 × OM − 13.15 × BD

(6)

The equations for SLL, DUL, and SAT were obtained from
he equations in Rawls et al. (1982) for −1500, −33, and −4 kPa,
espectively, which were derived from multiple linear regres-
ion analysis of 1323 soils. Soil organic matter (OM) and bulk
ensity (BD) were set to 0.5% and 1.5 g cm−3, respectively,
hich are representative value for soils in this region. Because
edo-transfer functions can exhibit large errors when applied
o new datasets (Gijsman et al., 2002), we first tested these
quations using a database of 60 local measurements of soil

ig. 4 – Empirical semi-variogram for (a) soil 0–30 cm field ca
ext for details). Solid lines shows best-fit model semi-vario
2.2.1. Soil
The soil conditions measured in YV exhibited spatial auto-
correlation up to approximately 8 km. Fig. 4a illustrates the
sample variogram for field capacity in the upper 30 cm in
YV, where here and throughout this paper spatial variabil-
ity is assumed to be isotropic (only the magnitude, and not
direction, of h is considered). Importantly, as the separation
distance approaches zero, �(h) tends to a non-zero value. Com-
monly called a nugget effect, this value reflects the variability
between two samples located infinitesimally close to each
other, which can result from fine scale variability and/or mea-
surement error.

Because soil properties are highly correlated with each
other, it is important to account for this correlation when sim-
ulating spatial distributions (Wackernagel, 2003). We, there-
fore, performed a principal component analysis (PCA) on the
nine soil properties (permanent wilting point, water holding

ty and (b) first principal component of soil properties (see
.

http://www.pieaes.org.mx/datos.htm
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capacity, and saturation point at 0–30, 30–60, and 60–100 cm).
A spherical variogram model was then fit to the sample var-
iogram of each of the derived principal components, which
by definition were orthogonal (a spherical model provided the
best-fit to the sample variogram; see Fig. 4b). For each simu-
lation run, spatial distributions of the principal components
were generated using unconditional sequential Gaussian sim-
ulation, implemented with the gstat library in the R software
package (Pebesma, 2004). The sequential simulation used sim-
ple block kriging, with the block size defined as 100 m × 100 m
(1 ha) and the neighborhood size limited to 15 points. In this
procedure, grid points are randomly visited and values are
generated from a Gaussian distribution defined by the exist-
ing values in neighboring cells (for details see, e.g., Deutsch
and Journel, 1992). The simulated values of the principal com-
ponents were finally back-transformed to the original units
using the covariance matrix derived in the PCA. Fig. 5 displays
the simulated distribution of soil properties for five simulation
runs.

2.2.2. Management
Management practices in YV did not generally exhibit signifi-
cant spatial correlation, with Moran’s I statistic exceeding 5%
significance only for the day of fourth irrigation (Table 1). We,
therefore, considered management to be randomly distributed
between fields. For the simulation, fields were defined as an
area comprising 3 × 3 cells (9 ha), which is close to the size of

field divisions in YV (each lot is 10 ha). For each field, one of
the 74 observed management regimes in the survey was ran-
domly selected as input to the CERES model. This method of
using the empirical distribution was chosen because the fairly
small sample size of the survey precluded an accurate model
of the management distribution (e.g., multi-variate Gaussian).

2.2.3. Climate
Climatic conditions were assumed to be spatially uniform in
YV, which exhibits very little variation in elevation. While
this simplification may introduce some error into the analy-
sis, we currently do not understand spatial climatic variability
enough to justify a non-constant model. We expect any errors
due to climatic variability to be small, however, given the min-
imal importance of rainfall for irrigated wheat and the likely
high spatial auto-correlation of temperature.

3. Results

3.1. Simulated yields, factor importance, and spatial
patterns

Simulated yield distributions for four model runs
are illustrated in Fig. 6. The 90,000 simulated values
(30 ha × 30 ha × 100 runs) exhibited a reasonable distribu-
tion for YV, with a mean of 5.15 t ha−1 and a standard
deviation of 1.24 t ha−1.

As discussed in step 3, measures of factor importance were
derived from a linear regression relating simulated yields to
soil and management inputs. Specifically, yields were first
regressed on the six soil properties, with the importance of
soil (IS) quantified as the coefficient of determination (R2) for
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Fig. 5 – Simulated spatial distribution of soil field capacity and wilting point for five sample simulation runs, generated with
unconditional sequential Gaussian simulation. The grain and extent of each simulation is 100 m × 100 m and 3 km × 3 km,
respectively. These soil properties, along with management and climatic variables, were input into CERES-wheat for the
spatial simulation of crop yields.

the linear regression. Management, which was represented as
a categorical variable with 76 classes corresponding to the 76
individual management regimes, was then added as a predic-
tor variable in the regression. The importance of management
(IM) was quantified as the difference in R2 between this full
model and the soil-only model.

Fig. 6 displays the values of IS, IM, and the ratio of semi-
variance at 350 m and 2 km (hereafter called SVR for semi-
variance ratio) for the corresponding simulation runs. As
the field sizes in the simulation were 300 m × 300 m, 350 m
represents the distance between two adjacent fields, while
2 km represents a distance close to the extent of the model

F ation
s rtan
s all yi
ig. 6 – (a–d) Simulated yield patterns for four sample simul
emi-variance at 350 m to semi-variance at 2 km (SVR), impo
imulations with higher values of IM, the proportion of over
runs, along with computed values of the ratio of
ce of soil (IS), and management (IM). SVR is higher for those
eld variance explained by management.
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Fig. 7 – Plots of SVR vs. IS (left) and IM (right) for 100 simulation runs. Solid line indicates best-fit linear regression. R2 of
regression was 0.84 for both IS and IM.

(3 km × 3 km). The SVR was therefore expected to provide an
indicator of how much more similar adjacent fields were than
fields separated by relatively large distances. In agreement
with expectation, simulations in which yield variations were
predominantly driven by management (e.g., Fig. 6a) were char-
acterized by a value of SVR near 1, indicating that points in
adjacent fields (separated by 350 m) were no more similar to
each other than points separated by 2 km. In contrast, simula-
tions in which soil properties explained a substantial part of
yield variation (e.g., Fig. 6d) exhibited significant correlation
between yields on adjacent fields. As a result, the values of
SVR for these simulations tended to be lower.

Using all 100 simulation runs, the statistical relationship
between SVR and IS or IM was established (Fig. 7). This rela-
tionship was not heavily influenced by any single simulation,
implying that 100 Monte Carlo simulations were sufficient in
this particular example. As expected, higher values of SVR
tended to reflect landscapes with a greater contribution of
management to crop yield variance. While the association
between yield patterns and factor importance was strong
(R2 = 0.84), a significant amount of scatter was also evident.
This reflects the fact that soil exhibits a substantial amount
of short-range variability because of the nugget effect, as well
as the fact that even totally random variations in manage-
ment can result in non-negligible long-range variability over
the spatial extent of the simulation. The scatter would likely be
reduced considerably with more accurate soil measurements,

data was adjusted for the change in support. This adjustment,
known as regularization, requires a new variogram �V(h) to be
computed from the sample variogram �(h), where �V(h) repre-
sents the variogram for support V. �V(h) can be expressed as
(Armstrong, 1998):

�V (h) = �(V, Vh) − �(V, V) (7)

where V and Vh are two regions of area (support) V whose
midpoints are separated by h, �(V, Vh) the average value of the
variogram between an arbitrary point in V and Vh, and �(V, V)
is the average value of the variogram between two arbitrary
points in V. The two terms on the right hand side of Eq. (7)
can be readily computed numerically if the support of �V(h)
is a multiple of the original support of �(h), by computing the
variogram value for every possible combination of points in V
(Armstrong, 1998). Indeed, the relative ease with which vari-
ograms can be transformed to different scales is one attractive
feature of geostatistical pattern metrics.

Since 100 is not a multiple of 30, �V(h) was computed for
both 90 m × 90 m and 120 m × 120 m support. The correspond-
ing values of SVR were computed as 0.90 and 0.95. Thus, the
observed value of SVR for the remotely sensed yield data at the
support of the simulation was roughly 0.9. As seen in Fig. 7,
this indicates that management variations explain roughly
70–90% of the yield variability for this year in the Yaqui Val-
ley. This finding agrees well with previous studies in YV that
as a significant fraction of the nugget effect may be due to
measurement error.

The relationship between factor importance and yield pat-
terns may also be improved through the use of alternative
pattern metrics (Gustafson, 1998; Haining, 2003). Despite the
limitations of the current approach, however, it is clear that
landscape yield patterns can considerably constrain the per-
ceived importance of soil and management as underlying
causes of yield variability. Such information can be used to
rapidly assess the relevant constraints to regional production
and guide more detailed studies of specific factors.

3.2. Application to remote sensing data

The metric SVR was computed for the yield dataset illus-
trated in Fig. 3. Since the spatial support of the remotely
sensed yields (30 m × 30 m) differed from that of the simula-
tion (100 m × 100 m), the metric derived from remote sensing
employed joint observations of soil type, management prac-
tices, and yields (Lobell et al., 2002, 2005), which concluded
that the majority of yield variance is explained by manage-
ment. The causes of the yield gap in YV obviously may differ
from those in other regions, in particular rainfed systems. Fur-
ther study would be needed to evaluate how the sources of the
yield gap differ in other settings.

4. Discussion and conclusions

The results demonstrate that spatial patterns of yields pos-
sess substantial information on the relative importance of soil
and management factors for yield variability. While previous
studies have applied crop models to spatially explicit input
datasets (Beaujouan et al., 2001; Priya and Shibasaki, 2001; Mo
et al., 2005), to our knowledge this is the first study to explic-
itly evaluate the pattern of derived yields and its sensitivity
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to underlying factors. As discussed in Section 1, the ability
to directly interpret aspects of observed yield patterns could
potentially reduce the amount of data and effort needed to
assess yield constraints. Specifically, data on the actual spa-
tial distribution of soil, climate, and management factors can
be replaced by knowledge of only their geostatistical proper-
ties.

The simulation framework presented here was simple in
many respects. For instance, only selected soil and manage-
ment properties were considered in the model, and unmod-
eled factors, such as planting depth, water quality, pest
dynamics, and myriad others may contribute to yield variabil-
ity in reality. In addition, soil properties were simulated using
simple geostatistical techniques whereas features, such as
anisotropy or sharp transitions from one soil type to another
were not modeled (Heuvelink and Webster, 2001). Spatial vari-
ability in climatic factors was also ignored though factors, such
as frost or rainfall variations would likely be critical in many
regions.

Thus, we emphasize that each step of the framework
may be improved through more accurate measurements and
more sophisticated modelling and pattern analysis tech-
niques. Nonetheless, the modelling framework itself appears
a promising avenue for interpreting readily available informa-
tion (spatial distribution of crop yields) in terms of desired
knowledge (sources of the yield gap). We also note that the
presence of measurement error in the soil samples likely led to
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assess limits to production even in regions with very scarce
ground data.

Finally, we note that the approach presented here can be
readily extended to look at additional factors, such as climatic
variability and interactions between soil, climate, and man-
agement. Individual soil and management variables may also
be discernible to the degree that their spatial pattern of vari-
ability is unique from other variables. In general, there are
many dimensions to space-time patterns of yield that may
contain useful information for scientists and policy makers,
provided that we possess the imagination and quantitative
tools to interpret them. While inverse models based on land-
scape pattern will likely never provide the detail of knowledge
possible with ground-based studies, their minimal cost and
time requirements and ability to use a growing wealth of spa-
tial information may be of great value in regions with limited
resources and time available for making important investment
decisions.

Acknowledgements

The authors wish to thank Luis Mendez, Alma Ortiz, and
Dolores Vazquez for help in compiling soil datasets, Gregory
Asner and Paul Switzer for helpful discussions and comments,
and two anonymous reviewers. This work was supported by
National Science Foundation and Environmental Protection

r

n overestimation of short-range variability in soil conditions,
nd therefore an underestimation of the ability of spatial pat-
erns to discriminate soil from management controls.

Successful application of this approach relies on proper
pecification of the spatial distribution of environmental con-
itions. Thus, more data on the semi-variance structure of
elevant soil, climate, and management variables is needed.
t is likely that to some extent such information can be mined
rom existing databases collected by government agencies
nd extension services. Alternatively, it is possible to spec-
fy models for spatial dependence of conditions based not on
ard data, but on assumptions about landscape patterns. For

nstance, one might assume that management is randomly
istributed between fields, and that soil properties covary up
o 8 km. The simulation framework can then be used to evalu-
te the implications of these assumptions for the interpreta-
ion of yield patterns. More generally, repeated analyses with
ifferent scenarios of landscape soil and management pat-
erns can be used to test the sensitivity of interpretations to
nderlying assumptions.

The spatial range of correlation for soil properties in YV was
imilar to the values of 10–19 km for permanent wilting point
nd field capacity in the Netherlands presented in (Hoosbeek
nd Bouma, 1998). While a full synthesis of landscape soil
ariability is beyond the scope of this paper, this raises the
uestion of whether general constraints can be placed on the
ange of soil semi-variograms when entering new regions.
imilarly, it is not yet clear whether management is randomly
istributed in most regions or whether this is unique to YV. A
ore complete understanding of the diversity in soil and man-

gement patterns among different regions, combined with a
ensitivity study of various pattern metrics, may facilitate the
evelopment of robust metrics that can be used to rapidly
Agency Graduate Research Fellowships and the David and
Lucille Packard Foundation.

e f e r e n c e s

Aggarwal, P.K., Kalra, N., 1994. Analyzing the limitations set by
climatic factors, genotype, and water and nitrogen
availability on productivity of wheat. 2. Climatically
potential yields and management strategies. Field Crops
Res. 38, 93–103.

Armstrong, M., 1998. Basic Linear Geostatistics.
Springer–Verlag, Germany, 153 pp.

Beaujouan, V., Durand, P., Ruiz, L., 2001. Modelling the effect of
the spatial distribution of agricultural practices on nitrogen
fluxes in rural catchments. Ecol. Model. 137, 93–105.

Bindraban, P.S., Stoorvogel, J.J., Jansen, D.M., Vlaming, J., Groot,
J.J.R., 2000. Land quality indicators for sustainable land
management: proposed method for yield gap and soil
nutrient balance. Agric. Ecosyst. Environ. 81, 103–112.

Calvino, P., Sadras, V., 2002. On-farm assessment of constraints
to wheat yield in the south-eastern Pampas. Field Crops
Res. 74, 1–11.

Cassman, K.G., 1999. Ecological intensification of cereal
production systems: yield potential, soil quality, and
precision agriculture. Proc. Natl. Acad. Sci. 96, 5952–5959.

Cassman, K.G., Dobermann, A., Walters, D.T., Yang, H., 2003.
Meeting cereal demand while protecting natural resources
and improving environmental quality. Annu. Rev. Environ.
Resour. 28, 315–358.

Cressie, N., 1991. Statistics for Spatial Data. Wiley, New York.
Deutsch, C.V., Journel, A.G., 1992. GSLIB: Geostatistical Software

Library and User’s Guide. Oxford University Press, New York.
Dobermann, A., Ping, J.L., Adamchuk, V.I., Simbahan, G.C.,

Ferguson, R.B., 2003. Classification of crop yield variability in
irrigated production fields. Agron. J. 95, 1105–1120.



182 e c o l o g i c a l m o d e l l i n g 1 9 6 ( 2 0 0 6 ) 173–182

Dumanski, J., Pieri, C., 2000. Land quality indicators: research
plan. Agric. Ecosyst. Environ. 81, 93–102.

Evans, L.T., 1993. Crop Evolution, Adaptation, and Yield.
Cambridge University Press, New York, 500 pp.

Gardner, R.H., Milne, B.T., Turner, M.G., O’Neill, R.V., 1987.
Neutral models for the analysis of broad-scale landscape
pattern. Landscape Ecol. 1, 19–28.

Getis, A., Ord, J.K., 1992. The analysis of spatial association by
use of distance statistics. Geogr. Anal. 24, 189–206.

Gijsman, A.J., Jagtap, S.S., Jones, J.W., 2002. Wading through a
swamp of complete confusion: how to choose a method for
estimating soil water retention parameters for crop models.
Eur. J. Agron. 18, 75–105.

Gustafson, E.J., 1998. Quantifying landscape spatial pattern:
what is the state of the art? Ecosystems 1, 143–156.

Haining, R., 2003. Spatial Data Analysis: Theory and Practice.
Cambridge University Press, Cambridge, 432 pp.

Hansen, J.W., Jones, J.W., 2000. Scaling-up crop models for
climate variability applications. Agric. Syst. 65, 43–72.

Heuvelink, G.B.M., Webster, R., 2001. Modelling soil variation:
past, present, and future. Geoderma 100, 269–301.

Hoosbeek, M.R., Bouma, J., 1998. Obtaining soil and land quality
indicators using research chains and geostatistical methods.
Nutr. Cycl. Agroecosyst. 50, 35–50.

Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor,
W.D., Hunt, L.A., Wilkens, P.W., Singh, U., Gijsman, A.J.,
Ritchie, J.T., 2003. The DSSAT cropping system model. Eur. J.
Agron. 18, 235–265.

Lobell, D., Ortiz-Monasterio, J., Addams, C., Asner, G., 2002. Soil,
climate, and management impacts on regional wheat
productivity in Mexico from remote sensing. Agric. Forest

and regression trees to understand yield variations in an
irrigated wheat landscape. Agron. J. 97, 241–249.

Lotz, L., 1997. Yield Monitors and Maps: Making Decisions.
Ohio State University, Columbus, OH.

Matthews, R., Stephens, W., Hess, T., Middleton, T., Graves, A.,
2002. Applications of crop/soil simulation models in tropical
agricultural systems. Adv. Agron. 76, 31–124.

Mo, X., Liu, S., Lin, Z., Xu, Y., Xiang, Y., McVicar, T.R., 2005.
Prediction of crop yield, water consumption and water use
efficiency with a SVAT-crop growth model using remotely
sensed data on the North China Plain. Ecol. Model. 183,
301–322.

Mosher, A.T., 1978. An Introduction to Agricultural Extension.
Agricultural Development Council, New York, 114 pp.

Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat
package. Comput. Geosci. 30, 683–691.

Penning de Vries, W.T.P., Rabbinge, R., Groot, J.J.R., 1997.
Potential and attainable food production and food security
in different regions. Philos. Trans. R. Soc. Lond. Ser. B Biol.
Sci. 352, 917–928.

Plant, R.E., 2001. Site-specific management: the application of
information technology to crop production. Comput.
Electron. Agric. 30, 9–29.

Priya, S., Shibasaki, R., 2001. National spatial crop yield
simulation using GIS-based crop production model. Ecol.
Model. 136, 113–129.

Rawls, W.J., Brakensiek, D.L., Saxton, K.E., 1982. Estimation of
soil-water properties. Trans. ASAE 25, 1316.

Singh, P., Boote, K.J., Rao, A.Y., Iruthayaraj, M.R., Sheikh, A.M.,
Hundal, S.S., Narang, R.S., 1994. Evaluation of the
groundnut model PNUTGRO for crop response to water
Meteorol. 114, 31–43.
Lobell, D.B., Asner, G.P., Ortiz-Monasterio, J.I., Benning, T.L.,

2003. Remote sensing of regional crop production in the
Yaqui Valley, Mexico: estimates and uncertainties. Agric.
Ecosyst. Environ. 94, 205–220.

Lobell, D.B., Ortiz-Monasterio, J.I., Asner, G.P., 2004. Relative
importance of soil and climate variability for nitrogen
management in irrigated wheat. Field Crops Res. 87,
155–165.

Lobell, D.B., Ortiz-Monasterio, J.I., Asner, G.P., Naylor, R.L.,
Falcon, W.P., 2005. Combining field surveys, remote sensing,
availability, sowing dates, and seasons. Field Crops Res. 39,
147–162.

Tsuji, G., Uehara, G., Balas, S. (Eds.), 1994. DSSAT v3 Crop
Simulation Software. University of Hawaii, Honolulu.

Turner, M.G., Gardner, R.H., O’Neill, R.V., 2001. Landscape
Ecology in Theory and Practice: Pattern and Process.
Springer–Verlag, New York, 401 pp.

Wackernagel, H., 2003. Multivariate Geostatistics: An
Introduction with Applications. Springer, New York,
387 pp.


	Regional importance of crop yield constraints: Linking simulation models and geostatistics to interpret spatial patterns
	Introduction
	Methods
	Data used in this study
	Spatial simulation of conditions
	Soil
	Management
	Climate


	Results
	Simulated yields, factor importance, and spatial patterns
	Application to remote sensing data

	Discussion and conclusions
	Acknowledgements
	References


