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Abstract

Understanding sources of variability in net primary productivity is critical for projecting ecosystem responses to global
change, as well as for improving management in agricultural systems. However, the processes controlling productivity cannot
be fully addressed with field- or global-scale observations. In this study, we performed a regional observational experiment
using remote sensing to analyze sources of yield variability in an irrigated wheat system in Northwest Mexico. Four different
soil types and 3 years with contrasting weather served as the two main experimental factors, while remotely sensed yields
provided thousands of observations within each treatment. Analysis of variance revealed that 6.6 and 4.6% of the variability
in yields could be explained by soil type and climate, respectively, with a negligible fraction explained by soil-type–climate
interactions. The majority of the variability in yields (88.6%) was observed within treatments and was attributed mainly to
variations in management. The impacts of management were observed to depend significantly on both soil type and climate,
as revealed by distributions of yields within each treatment. The results indicate that changes in management will have the
greatest impact on regional production, and will also play a large role in determining the impact of any changes in climate or
soil. This work also demonstrates the use of consistent remote sensing estimates to perform regional studies unfeasible with
field-based approaches.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Spatial and temporal variations in the productivity
of terrestrial vegetation can have profound impacts on
humans and their environment, with effects ranging
from atmospheric chemistry and climate to global food
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production (Pielke et al., 1998; Schimel et al., 2001).
This variability arises from changes in numerous fac-
tors, including soil physical and chemical properties,
temperature, precipitation, solar radiation, and human
management. In an effort to project the impact of fu-
ture changes in these controlling factors, it is critical to
understand the relationship between productivity and
each factor, along with their interactions.

Interactions between human activity and envi-
ronmental controls are particularly relevant in man-
aged ecosystems such as agriculture. For example,
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agronomists have long noted the significant difference
between yields achieved on experimental plots and
average yields in farmers’ fields. This “yield gap” is
commonly attributed to superior soils or management
at the experimental station, but the exact reasons are
often unknown due to a paucity of measurements
across the entire region of interest (Cassman and
Pingali, 1995). As global food demand continues to
grow, understanding and minimizing the differences
between maximum and regional average yields will
be increasingly important (Cassman, 1999; Penning
de Vries et al., 1997).

Sources of variation in productivity have tradition-
ally been investigated with controlled field experi-
ments, which provide useful insight into the role of
specific factors. However, these studies are limited in
their ability to address spatial and temporal variability
for two main reasons. First, the strength of a control in
a field experiment does not necessarily correspond to
its importance at the regional scale. For example, the
soil properties and management practices in an exper-
imental plot may not be representative of nearby loca-
tions. Second, important interactions between factors
are difficult to assess with limited sample sizes. In or-
der to better understand controls on productivity and
the relevance of these controls at the regional scale,
studies that span larger spatial and temporal scales
than are typically feasible with field-based experimen-
tal approaches are needed.

As an alternative to field experimentation, several
studies have analyzed continental to global-scale pat-
terns in net primary productivity (NPP) using remote
sensing from satellite sensors, such as the Advanced
Very High Resolution Radiometer. These sensors col-
lect data at daily to weekly intervals which, when used
with models of NPP, provide estimates of productivity
with spatial resolutions greater than 1 km (Field et al.,
1995). However, these satellite approaches suffer
serious limitations at the smaller spatial scales rele-
vant to management. First, the generality required by
global-scale applications results in limited accuracies
for any single region (Lobell et al., 2002b; Malmström
et al., 1997). Second, the low repeat frequencies of
satellite sensors with sufficient spatial resolutions for
regional applications (<100 m) preclude using the
NPP models employed at the global scale. Images
from a single date, for instance, do not provide very
tight constraints on plant development throughout the

entire growing season. This is especially true in agri-
cultural systems where crop type and planting dates
can vary from field to field.

Bridging the gap between field and global-scale
studies requires methods to accurately and consis-
tently quantify plant productivity at high spatial res-
olutions. Recent work has focused on remote sensing
of crop productivity (i.e., yields) in agricultural sys-
tems, where spatial and temporal variability affects
farmer income and food production (Lobell et al.,
2002a). Combining this information with knowledge
of soil, climate, and management conditions, it be-
comes possible to observe thousands of realizations of
field “experiments” to analyze sources of variability.

In this study, we employed a remote sensing ap-
proach to investigate sources of wheat yield variability
in the Yaqui Valley, an intensive agricultural region
in Northwest Mexico. Yields derived from 3 years
of Landsat satellite imagery were combined with soil
type and climate data to determine the importance
of these factors for wheat production. In addition,
comparisons of yield variations within each treatment
(i.e., soil–year combination) were used to investigate
soil and climate interactions with management. The
results were then used to assess the effects of potential
soil, climate, and management changes in the future
on regional crop productivity.

2. Methods

2.1. Site description

The Yaqui Valley is an agricultural region in North-
west Mexico (27◦N, 110◦W) with agro-climatic con-
ditions similar to that of 40% of developing world
wheat production (Pingali and Rajaram, 1999). The
Valley covers 225,000 ha between the Sierra Madre
Mountains to the east and the Gulf of California to
the west (Fig. 1). Commonly referred to as the home
of the Green Revolution, the region produces some of
the highest wheat yields in the world resulting from
a combination of irrigation, high fertilizer rates, and
modern cultivars (Matson et al., 1998). Nonetheless,
regional yields have averaged only 69% of yields
achieved at the local research station over the past 10
years (K. Sayre, personal communication), leaving
significant potential to reduce the yield gap.
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Fig. 1. (a) The Yaqui Valley study region in Northwest Mexico. A Landsat ETM+ composite image (RGB= Bands 4, 3, 2) from 16
March, 2001 shows the dominant presence of wheat fields, which appear red at this time of year. The four soil zones used in this study
are outlined in white and the meteorological station is marked by crosshairs. (b) Yield estimates for the 2000–2001 growing season for
the four soil zones, derived using ETM+ scenes from 11 January and 16 March, 2001.
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The climate in the Yaqui Valley is semi-arid, with
an average annual precipitation of 317 mm falling
mainly between June and September. The wheat
growing season (November–April) is characteristi-
cally dry, and farmers typically apply 4–5 irrigations
throughout the crop cycle. Most of the soils in the
region are vertisols with organic matter (OM) con-
tent below 1%, while coastal and river areas are
characterized by aridisols with slightly higher OM.
In this study, we focused on four predominant soil
types within the Valley: montmorillonitic Petrocalcic
Calcitorrert, montmorillonitic Chromic Calcitorrert,
montmorillonitic Typic Calcitorrert, and mixed Vertic
Haplocalcid. These soils are referred to hereafter as
stony clay, compacted clay, deep clay, and silt loam,
respectively.

2.2. Remote sensing of yields

Fig. 2outlines the approach used to estimate yields,
which is described in detail byLobell et al. (2002a).
Briefly, pixels containing wheat fields are first identi-
fied using temporal composites of vegetation indices.
Yield for each pixel in which wheat is growing is

Fig. 2. A schematic representation of the method used to remotely sense wheat yields. The model is run several times on each pixel
classified as wheat, with inputs marked by an asterisk randomly adjusted in each iteration to estimate uncertainty in modeled yields. fAPAR
phenology, which is based on growing-degree days, is adjusted to match satellite observations at each pixel by varying the planting date
and maximum fAPAR.

then modeled using the equation (Monteith, 1972,
1977):

Yield =
(∑

PAR× fAPAR × �t
)

εHI (1)

where PAR is incident photosynthetically active radi-
ation (MJ from 400 to 700 nm), fAPAR is the fraction
of PAR absorbed by the canopy,ε is the light-use ef-
ficiency in units of gram biomass MJ PAR−1, and HI
is the harvest index, or ratio of grain mass to above-
ground biomass. Satellite estimates of fAPAR, in this
case from the Landsat Thematic Mapper (TM) or En-
hanced Thematic Mapper Plus (ETM+) sensors, are
used to constrain the temporal evolution of fAPAR,
which is based on growing-degree days and has been
established by previous field trials in the region. Com-
bining satellite and ground data in this manner pro-
vides estimates of daily fAPAR for each pixel. These
values are then combined with daily solar radiation
measurements to estimate total growing season light
absorption, while values forε (2.16 g MJ PAR−1) and
HI (0.37) are based on field studies. Uncertainties in
each model input are propagated through the model
to derive spatial estimates of both mean yields and
standard deviations.
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Lobell et al. (2002a)demonstrated that this ap-
proach provides robust estimates of regional wheat
production in the Yaqui Valley, with errors under 5%
for quantifying total regional harvests. However, the
authors did not validate yield estimates on individual
fields, a critical step when attempting to understand
inter-field yield variations. Therefore, in this study
we interviewed farmers who kept records of produc-
tion for individual fields for the 2000–2001 growing
season. Yields were calculated by dividing the total
weight of grain sold by the total area harvested. A to-
tal of 80 fields scattered throughout the Valley were
used in this study, with an average field size of 20 ha.

To acquire observations across a range of climatic
conditions, Landsat images were collected for three
growing seasons with contrasting climatic regimes:
1993–1994, 1999–2000, and 2000–2001.Table 1dis-
plays the Landsat sensor, image dates, and growing
season characteristics for each year. The growing sea-
son minimum temperature in 1993–1994 was among
the highest on record, while for 2000–2001 it was the
lowest since 1971. This provided the necessary con-
trast to analyze temperature effects on productivity.

2.3. Analysis of variance

For this study, we selected four areas within the
Valley that (1) possessed contrasting soil types, (2)
contained a large number of wheat fields, and (3)
were close to the meteorological station where daily
temperature, precipitation, and solar radiation were
recorded. The latter constraint was imposed to min-
imize the degree of spatial variability in climate,
due to a lack of additional stations.Fig. 1 displays
each of these areas within the study region. For sim-
plicity, we refer to each combination of soil and
climate as a treatment, with a total of 12 treatments
(four soils× 3 years).

Two-way analysis of variance (ANOVA) was used
to quantify the contribution of soil type, climate,
and their interaction to yields. Traditional ANOVA
assumes that observations within each treatment are
normally distributed, with equal variance among treat-
ments. However, for balanced designs (equal number
of observations in each treatment) with a large num-
ber of observations, violations of these assumptions
result in only small errors (Sahai and Ageel, 2000).
Therefore, while yield distributions were slightly

skewed and varied between treatments, the results of
the ANOVA are considered robust.

The number of pixels classified as wheat varied be-
tween soil types and years, ranging from 12,810 to
390,982. In order to obtain a balanced experimental
design, we randomly selected 10,000 pixels from each
treatment as input to ANOVA. Repeated tests indi-
cated that changing the sequence of random numbers
had a negligible effect on the results.

Variability within each treatment was, by defini-
tion, due to factors other than soil type and climate.
We attribute the majority of this residual variabil-
ity to management, including factors such as date
of sowing, amount and timing of fertilizer applica-
tions, number and timing of irrigations, tillage and
cultivation practices, and pest control. Another pos-
sible source of variability was differences in soil
physical and chemical properties within soil types.
However, spatial distributions of yields indicated that
most of the variability occurred between individual
fields, which is commensurate with management (see
below). This suggests that variations in soil proper-
ties affecting yield were relatively minor within soil
types, or that any major soil properties contributing
to yields vary from field to field, and are therefore
likely themselves to be the result of different man-
agement histories (e.g., tillage practices, burning of
crop residues, groundwater pumping).

To investigate interactions between management
and soil type or climate, we compared yield distri-
butions between the 12 treatments. The median value
within each treatment was used to quantify yield on
an average field, while the difference between the
first and third quartiles, referred to as the interquar-
tile range (IQR), provided a measure of the gap
between well-managed and poorly managed fields.
This comparison assumed that the distribution of
management was identical in different soil types and
years. Since management appears to be randomly
distributed within the study region, this assumption
should hold for different soil types. Between years,
management can systematically change as, for in-
stance, water availability changes or farmers apply
more fertilizer. However, changes within the 7-year
period of this study are believed to be small. For
example, nitrogen application rates changed from an
average of 242 kg ha−1 in 1993–1994 to 268 kg ha−1

in 2000–2001. This represents only a 10% change,
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Fig. 3. A comparison of mean yield estimates on 80 fields with
farmer reported yields for the 2000–2001 growing season.

and field experiments suggest that increasing fertil-
izer rates at such high levels has minimal impacts on
yields (Ortiz-Monasterio, unpublished data).

3. Results and discussion

3.1. Yield estimation

The mean yield estimates using Landsat ETM+ for
2000–2001 are compared with farmer reported values
in Fig. 3. For these 80 fields, the average estimation
error was 0.37 t ha−1, or 5.9%, providing confidence
in the subsequent analysis of variability. The yield im-
age inFig. 1demonstrates the large spatial variability
in productivity. While some variations exist within
fields, the greatest differences are evident between
fields. This supports the assumption that management,

Table 2
ANOVA table for wheat yields

Source of variation Degrees of freedom Sum of squares % Total Mean squareF-value P-value

Soil type 3 9573.6 6.6 3191.2 54.9 <0.001
Year 2 6638.1 4.6 3319.0 57.1 <0.001
Interaction (soil× year) 6 348.9 0.2 58.1 54.1 <0.001
Error 119,988 128916.0 88.6 1.1

Total 119,999 145476.6 100

and not natural soil variability, is the major source of
yield variations within each soil type.

3.2. Analysis of variance

The results of ANOVA are presented inTable 2. Soil
type and climate explained 6.6 and 4.6% of yield vari-
ability, respectively, representing significant yet minor
controls. The interaction between soil and climate was
statistically significant, but explained less than 0.25%
of variability and was, therefore, deemed negligible.
The remaining 88.6% of variability was due to within
treatment effects, attributed mainly to management.

In addition to ANOVA, we considered the spatial
distribution of yields as an alternative measure of the
relative importance of soils and management.Fig. 4
shows a semi-variogram computed for the 2000–2001
yield image. Semi-variograms summarize the variance
between samples as a function of separation distance,
or lag (Curran and Atkinson, 1998). Conceptually, if
management is randomly distributed we expect no ad-
ditional variance due to management at lags greater
than the maximum field length, which in this case is
approximately 1 km. Any additional variance beyond
this lag must arise from non-management sources,
such as spatial variations in soil properties or cli-
mate. As seen inFig. 4, the variance at a lag of 1 km
is 9264, which is roughly 93% of the total variance
(≈10,000). This agrees well with the results of the
ANOVA, which indicated that management explained
92.8% of the variability within a single year (i.e. the
variability not explained by climate). The ability to
relate a semi-variogram to the relative importance of
environmental and management factors may be es-
pecially useful in regions where information on soil
boundaries or spatial heterogeneity of climate is not
readily available.
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Fig. 4. Semi-variogram of 2000–2001 yield image. Dotted line indicates a lag of 1 km, roughly equal to the maximum size of fields in
this region.

3.3. Soil–climate–management interactions

Fig. 5shows the frequency distributions of yield es-
timates within the four soil types for each of 3 years.
In all cases, yields were distributed between roughly
300 and 800 g m−2 (3–8 t ha−1). However, differences
in other aspects of the distributions revealed important
aspects of soil and climate effects on yields, as well
as their interactions with management (seeFig. 5 and
Table 3). In better soils, the yield distributions were
skewed more toward high values than in the poorer
soils. For example, in 1994 the silt loam exhibited a
distribution skewed heavily toward high yields, while
yields on the stony clay were skewed toward rela-
tively low yields. The difference in median yields in
this case, which represent productivity on a field with
average management, was 1.21 t ha−1. These patterns

Table 3
Median and IQR of wheat yields within each treatment

Year Stony clay Compacted clay Deep clay Silt loam Average

Median IQR Median IQR Median IQR Median IQR Median IQR

1993–1994 5.13 2.13 5.49 2.08 5.97 1.81 6.34 1.61 5.73 1.91
1999–2000 5.32 1.70 5.88 1.36 6.04 1.40 6.56 1.27 5.95 1.43
2000–2001 5.77 1.67 6.28 1.22 6.39 1.32 6.61 1.33 6.26 1.39

Average 5.41 1.83 5.88 1.55 6.13 1.51 6.50 1.40 5.98 1.58

demonstrate that poorer soils demand a higher level of
management to achieve the same yields. While yields
of 6.0 t ha−1 were possible on the stony clay, this oc-
curred only above the 70th percentile, while the same
yields were realized at the 40th percentile on the silt
loam.

Similar patterns were observed for changes in cli-
mate. Within each soil, yields became more skewed
toward higher values in years with favorable climate
(lower minimum temperatures). This resulted in higher
median yields as well as smaller differences between
the first and third quartiles.Fig. 6 shows the median
and IQR as a function of growing season minimum
temperature for each soil type. While median yields
decreased linearly in most cases with growing season
temperature, the IQR exhibited a non-linear increase
with temperature. This indicates that climate has a
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Fig. 5. Histograms of yields in each soil type for each year. Dotted lines show first, second (median), and third quartiles. Climate conditions
improve from left to right, while soil improves from top to bottom.

different effect at different levels of management, with
a greater yield response to temperature for poor man-
agement (first quartile) compared to good management
(third quartile).

These interactions between climate and manage-
ment are further illustrated inFig. 7A, which presents
the empirical distribution function for yields in each
year, averaged over all soil types. The empirical dis-
tribution function depicts the cumulative proportion
of pixels that are less than or equal to each yield
value. In this figure, a given level of management
coincides with a value on they-axis, while the yield
difference between years is the horizontal distance
between curves at thisy-value.

At relatively low levels of management, the differ-
ence between the hottest and coolest growing seasons
was significantly larger than at higher levels of man-
agement. This indicates that poorly managed fields
are more susceptible to losses in warmer years, and
similarly are able to increase their production more in
cool years. However, differences between years were
still evident even at the 100th percentile, demonstrat-
ing the fundamental limitations imposed by light and
temperature, even in the best managed fields.

Fig. 7B shows the empirical distribution function
for yields on different soil types, averaged over all
years. ComparingFig. 7A and Breveals two signifi-
cant distinctions between soil and climate interactions
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Fig. 6. (a) Median and (b) IQR of yields as a function of growing season minimum temperature for each soil type.

with management. First, all soil types possessed the
same minimum and maximum yields, indicating that
it is possible to overcome soil limitations with suf-
ficiently good management. This contrasts with the
effects of climate, which changed the maximum at-
tainable yield from year to year. Second, unlike with
climate, the impacts of soils on yields were maxi-
mized at medium levels of management. Evidently at
low levels of management, soil quality becomes less
relevant to productivity.

To illustrate the observed interactions between soil,
climate, and management, consider an example where

management differences are due solely to different
timing of irrigations, with the poorest management
representing the worst-case (e.g., no irrigation) and the
best management representing optimal application. In
soils that retain more moisture, water stress to crops
will occur at a slower rate, placing less demand on
the exact timing of irrigation. Therefore, at average
levels of management, better soils will reduce water
stress and thereby increase yields. However, with per-
fect timing of irrigation, the extent to which soils pro-
vide room for error is less important, and differences
between yields at high levels of management will
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Fig. 7. Empirical distribution function of yields for (A) all soil types within each year and (B) all years within each soil type.

consequently be smaller. Similarly, fields without irri-
gation will experience significant water stress regard-
less of soil properties, reducing the yield difference
between soils. On the other hand, cooler climate will
reduce water stress at all levels of management, by
lowering crop evapotranspiration rates.

The observed relationships between soil, climate,
management, and productivity have several implica-
tions for potential future changes. The first of these
regards the potential for reducing spatial variability in
yields. While soils and climate were found to have
a significant impact on yields, these differences were

small when compared to the effect of management.
For example, the average yield difference between low
and high management (25th and 75th percentile, re-
spectively) was twice the average difference between
poor and high quality soils (Table 3). Therefore, sig-
nificant yield increases appear possible provided that
the necessary changes in management can be identified
and implemented. However, it should be stressed that
variations due to soil and climate are still fairly signif-
icant. In this case, the average difference between the
best and worst soils (1.09 t ha−1) or years (0.53 t ha−1)
corresponded to 18.3 and 8.9% of the average median
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yield of 5.98 t ha−1, respectively. Future changes in
climate and soil quality could therefore have signifi-
cant impacts on productivity.

The results presented here also emphasize that
the effects of future climate and soil changes will
largely depend upon management practices. At high
levels of management (third quartile), for instance,
the average yield in the best year was 0.29 t ha−1

(4.4%) higher than the worst year (Fig. 7A). The
corresponding difference in poorly managed fields
(first quartile) was 0.93 t ha−1 (20.7%). The differ-
ence between these responses to climate represents
a “range of vulnerability” to climate variation that
is important when considering future scenarios. A
region managed uniformly at the level of the third
quartile, e.g., would be nearly five times less affected
by climate variations than at the level of the first
quartile. Improving management is therefore critical
not only for increasing yields, but also for reduc-
ing future vulnerability to climate changes and soil
degradation.

4. Conclusions

Using remotely sensed yields in combination with
soil and climate data, we analyzed the effects of soil,
climate, and management on wheat productivity. In
the Yaqui Valley region, management differences
were more important than soil type and climate varia-
tions for determining wheat yields, although the latter
two represented significant sources of variability.
Management interactions with soil type and climate
were also important for understanding yields, as the
impacts of both soil and climate changes depended
on management. Future work will focus on identi-
fying the specific management factors that are most
important to wheat production.

The results presented here provide insight into the
processes governing yields, as well as the response of
regional production to future changes. For example,
increases in temperature resulting from global warm-
ing could cause decreased yields, but these losses
would depend largely on the level of management.
Several modeling studies have resulted in similar con-
clusions, showing that the impact of climate changes
on agriculture is sensitive to adaptation responses
(IPCC, 2001). The importance of management to

food production was also highlighted byDöös and
Shaw (1999), who considered various controls on
global food production and concluded that greatest
changes in future production will be due to “direct
human factors such as improved management and
the increased use of fertilizers, rather than natural
and/or indirect human factors such as climate change,
irrigation, salinization, waterlogging, or pests.”

Extending this approach to other regions should
enable a comparative study of controlling factors
in agricultural production. In some regions, such as
rain-fed systems, it is possible that soils or climate
play a more important role than management in de-
termining yields. Identifying the relevant constraints
and interactions in each case could provide impor-
tant information to direct management and research
efforts. The methodology demonstrated here is also
applicable to other ecosystems, provided that produc-
tivity estimates can be properly validated. In general,
the capability of remote sensing to provide thousands
of observations should greatly aid studies of spatially
and temporally dynamic processes at the regional
scale.
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